IDEAS home Printed from https://ideas.repec.org/a/bla/sysdyn/v36y2020i4p397-446.html
   My bibliography  Save this article

Dynamic trade‐offs in granulocyte colony‐stimulating factor (G‐CSF) administration during chemotherapy

Author

Listed:
  • Orkun İrsoy
  • Şanser Güz
  • Naz Beril Akan
  • Gönenç Yücel

Abstract

Chemotherapeutic treatment of cancer comes with side effects on the immune system, such as Chemotherapy‐Induced Neutropenia (CIN). A recombinant form of Granulocyte Colony‐Stimulating Factor (G‐CSF) has been used to alleviate CIN. This is a challenging task due to the feedback complexity of the hematological system. A System Dynamics model is constructed to study this system and to derive practical insights for the management of CIN. Stimulation of neutrophil production via G‐CSF is observed to propose crucial trade‐offs. On one hand, production by stem cells and mobilization from bone marrow should be stimulated to compensate for the impairment caused by chemotherapy. On the other hand, it is important to avoid overstimulation, which reduces the regenerative capacity, as well as draining the much‐needed bone‐marrow reservoir. Our analysis supports the intuition that the response to G‐CSF administration is conditional to patient characteristics, and “one for all” treatment protocols are impractical. © 2021 System Dynamics Society

Suggested Citation

  • Orkun İrsoy & Şanser Güz & Naz Beril Akan & Gönenç Yücel, 2020. "Dynamic trade‐offs in granulocyte colony‐stimulating factor (G‐CSF) administration during chemotherapy," System Dynamics Review, System Dynamics Society, vol. 36(4), pages 397-446, October.
  • Handle: RePEc:bla:sysdyn:v:36:y:2020:i:4:p:397-446
    DOI: 10.1002/sdr.1671
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sdr.1671
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sdr.1671?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Erik Pruyt & Willem L. Auping & Jan H. Kwakkel, 2015. "Ebola in West Africa: Model-Based Exploration of Social Psychological Effects and Interventions," Systems Research and Behavioral Science, Wiley Blackwell, vol. 32(1), pages 2-14, January.
    2. James Rogers & Edward J. Gallaher & David Dingli, 2018. "Personalized ESA doses for anemia management in hemodialysis patients with end‐stage renal disease," System Dynamics Review, System Dynamics Society, vol. 34(1-2), pages 121-153, January.
    3. Özge Karanfil & Yaman Barlas, 2008. "A Dynamic Simulator for the Management of Disorders of the Body Water Homeostasis," Operations Research, INFORMS, vol. 56(6), pages 1474-1492, December.
    4. D C Lane & C Monefeldt & J V Rosenhead, 2000. "Looking in the wrong place for healthcare improvements: A system dynamics study of an accident and emergency department," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(5), pages 518-531, May.
    5. Negar Darabi & Niyousha Hosseinichimeh, 2020. "System dynamics modeling in health and medicine: a systematic literature review," System Dynamics Review, System Dynamics Society, vol. 36(1), pages 29-73, January.
    6. B C Dangerfield, 1999. "System dynamics applications to European health care issues," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(4), pages 345-353, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Negar Darabi & Niyousha Hosseinichimeh, 2020. "System dynamics modeling in health and medicine: a systematic literature review," System Dynamics Review, System Dynamics Society, vol. 36(1), pages 29-73, January.
    2. Özge Karanfil & Niyousha Hosseinichimeh & Jim Duggan, 2020. "System dynamics and bio‐medical modeling," System Dynamics Review, System Dynamics Society, vol. 36(4), pages 389-396, October.
    3. Edward G. Anderson & David R. Keith & Jose Lopez, 2023. "Opportunities for system dynamics research in operations management for public policy," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1895-1920, June.
    4. Zamra Sajid & Morten Andersen & Johnny T. Ottesen, 2020. "System dynamics of cancer in erythropoiesis with multiple EPO feedbacks," System Dynamics Review, System Dynamics Society, vol. 36(4), pages 447-466, October.
    5. Alberto Sardi & Enrico Sorano, 2019. "Dynamic Performance Management: An Approach for Managing the Common Goods," Sustainability, MDPI, vol. 11(22), pages 1-22, November.
    6. Mohammad Reza Davahli & Waldemar Karwowski & Redha Taiar, 2020. "A System Dynamics Simulation Applied to Healthcare: A Systematic Review," IJERPH, MDPI, vol. 17(16), pages 1-27, August.
    7. Chih‐Tung Hsiao & Chun‐Cheng Chen & Lee‐Kai Lin & Chung‐Shu Liu, 2023. "A systems view of responding to the COVID‐19 pandemic: A causal loop model for Taiwan's approach," Systems Research and Behavioral Science, Wiley Blackwell, vol. 40(1), pages 194-206, January.
    8. Reda Lebcir & Rifat Atun, 2021. "Resources management impact on neonatal services performance in the United Kingdom: A system dynamics modelling approach," International Journal of Health Planning and Management, Wiley Blackwell, vol. 36(3), pages 793-812, May.
    9. A. Sardi & E. Sorano, 2021. "Dynamic Performance Management: An Approach for Managing the Common Goods," Papers 2102.04090, arXiv.org.
    10. John Pastor Ansah & Keith Low Sheng Hng & Salman Ahmad & Cheryl Goh, 2021. "Evaluating the impact of upstream and downstream interventions on chronic kidney disease and dialysis care: a simulation analysis," System Dynamics Review, System Dynamics Society, vol. 37(1), pages 32-58, January.
    11. Jeroen Struben, 2020. "The coronavirus disease (COVID‐19) pandemic: simulation‐based assessment of outbreak responses and postpeak strategies," System Dynamics Review, System Dynamics Society, vol. 36(3), pages 247-293, July.
    12. David C. Lane & Özge Pala & Yaman Barlas & Lambertus P. J. Nistelrooij & Etiënne A.J.A. Rouwette & Ilse M. Verstijnen & Jac A.M. Vennix, 2015. "The Eye of the Beholder: A Case Example of Changing Clients' Perspectives Through Involvement in the Model Validation Process," Systems Research and Behavioral Science, Wiley Blackwell, vol. 32(4), pages 437-449, July.
    13. Claire F. Brereton & Paul Jagals, 2021. "Applications of Systems Science to Understand and Manage Multiple Influences within Children’s Environmental Health in Least Developed Countries: A Causal Loop Diagram Approach," IJERPH, MDPI, vol. 18(6), pages 1-23, March.
    14. Saba Pourreza & Misagh Faezipour & Miad Faezipour, 2022. "Eye-SCOR: A Supply Chain Operations Reference-Based Framework for Smart Eye Status Monitoring Using System Dynamics Modeling," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
    15. Y Xing & B Dangerfield, 2011. "Modelling the sustainability of mass tourism in island tourist economies," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1742-1752, September.
    16. David C. Lane & Jim Duggan, 2020. "Addressing public health and security challenges with system dynamics," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 867-874, November.
    17. S Vanderby & M W Carter, 2010. "An evaluation of the applicability of system dynamics to patient flow modelling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(11), pages 1572-1581, November.
    18. Navid Ghaffarzadegan & Richard C. Larson, 2018. "SD meets OR: a new synergy to address policy problems," System Dynamics Review, System Dynamics Society, vol. 34(1-2), pages 327-353, January.
    19. Ya-Tsune Sie & Pierre-Alexandre Château & Yang-Chi Chang & Shiau-Yun Lu, 2018. "Stakeholders Opinions on Multi-Use Deep Water Offshore Platform in Hsiao-Liu-Chiu, Taiwan," IJERPH, MDPI, vol. 15(2), pages 1-13, February.
    20. Jannie Coenen & Rob van der Heijden & Allard C. R. van Riel, 2019. "Making a Transition toward more Mature Closed-Loop Supply Chain Management under Deep Uncertainty and Dynamic Complexity: A Methodology," Sustainability, MDPI, vol. 11(8), pages 1-27, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:sysdyn:v:36:y:2020:i:4:p:397-446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/0883-7066 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.