IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v30y2003i1p227-239.html
   My bibliography  Save this article

Testing Homogeneity in Gamma Mixture Models

Author

Listed:
  • XIN LIU
  • CRISTIAN PASARICA
  • YONGZHAO SHAO

Abstract

This paper characterizes the asymptotic behaviour of the likelihood ratio test statistic (LRTS) for testing homogeneity (i.e. no mixture) against gamma mixture alternatives. Under the null hypothesis, the LRTS is shown to be asymptotically equivalent to the square of Davies's Gaussian process test statistic and diverges at a log n rate to infinity in probability. Based on the asymptotic analysis, we propose and demonstrate a computationally efficient method to simulate the null distributions of the LRTS for small to moderate sample sizes.

Suggested Citation

  • Xin Liu & Cristian Pasarica & Yongzhao Shao, 2003. "Testing Homogeneity in Gamma Mixture Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 227-239, March.
  • Handle: RePEc:bla:scjsta:v:30:y:2003:i:1:p:227-239
    DOI: 10.1111/1467-9469.00328
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9469.00328
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9469.00328?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingxing He & Jiahua Chen, 2022. "Strong consistency of the MLE under two-parameter Gamma mixture models with a structural scale parameter," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 125-154, March.
    2. Fitzpatrick, Matthew & Stewart, Michael, 2022. "Asymptotics for Markov chain mixture detection," Econometrics and Statistics, Elsevier, vol. 22(C), pages 56-66.
    3. Garel, Bernard, 2007. "Recent asymptotic results in testing for mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5295-5304, July.
    4. Cho, Jin Seo & White, Halbert, 2010. "Testing for unobserved heterogeneity in exponential and Weibull duration models," Journal of Econometrics, Elsevier, vol. 157(2), pages 458-480, August.
    5. Chen, Qikun & Stewart, Michael, 2024. "Optimal detection of sparse gamma scale admixture with twice the null mean," Statistics & Probability Letters, Elsevier, vol. 209(C).
    6. Wong, Tony Siu Tung & Li, Wai Keung, 2014. "Test for homogeneity in gamma mixture models using likelihood ratio," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 127-137.
    7. Jin Seo Cho & Jin Seok Park & Sang Woo Park, 2018. "Testing for the Conditional Geometric Mixture Distribution," Working papers 2018rwp-123, Yonsei University, Yonsei Economics Research Institute.
    8. Mingxing He & Jiahua Chen, 2022. "Consistency of the MLE under a two-parameter Gamma mixture model with a structural shape parameter," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(8), pages 951-975, November.
    9. Hung-Chia Chen & James J. Chen, 2016. "Hybrid Mixture Model for Subpopulation Identification," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(1), pages 28-42, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:30:y:2003:i:1:p:227-239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.