IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v45y2024i5p739-770.html
   My bibliography  Save this article

On distributional autoregression and iterated transportation

Author

Listed:
  • Laya Ghodrati
  • Victor M. Panaretos

Abstract

We consider the problem of defining and fitting models of autoregressive time series of probability distributions on a compact interval of ℝ. An order‐1 autoregressive model in this context is to be understood as a Markov chain, where one specifies a certain structure (regression) for the one‐step conditional Fréchet mean with respect to a natural probability metric. We construct and explore different models based on iterated random function systems of optimal transport maps. While the properties and interpretation of these models depend on how they relate to the iterated transport system, they can all be analyzed theoretically in a unified way. We present such a theoretical analysis, including convergence rates, and illustrate our methodology using real and simulated data. Our approach generalizes or extends certain existing models of transportation‐based regression and autoregression, and in doing so also provides some additional insights on existing models.

Suggested Citation

  • Laya Ghodrati & Victor M. Panaretos, 2024. "On distributional autoregression and iterated transportation," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(5), pages 739-770, September.
  • Handle: RePEc:bla:jtsera:v:45:y:2024:i:5:p:739-770
    DOI: 10.1111/jtsa.12736
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jtsa.12736
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jtsa.12736?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chao Zhang & Piotr Kokoszka & Alexander Petersen, 2022. "Wasserstein autoregressive models for density time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 30-52, January.
    2. Lajos Horváth & Piotr Kokoszka & Ron Reeder, 2013. "Estimation of the mean of functional time series and a two-sample problem," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(1), pages 103-122, January.
    3. Newey, Whitney K, 1991. "Uniform Convergence in Probability and Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 59(4), pages 1161-1167, July.
    4. Delicado, P., 2011. "Dimensionality reduction when data are density functions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 401-420, January.
    5. Kneip A. & Utikal K. J, 2001. "Inference for Density Families Using Functional Principal Component Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 519-542, June.
    6. Laya Ghodrati & Victor M Panaretos, 2022. "Distribution-on-distribution regression via optimal transport maps [Upper and lower risk bounds for estimating the Wasserstein barycenter of random measures on the real line]," Biometrika, Biometrika Trust, vol. 109(4), pages 957-974.
    7. Petersen, Alexander & Zhang, Chao & Kokoszka, Piotr, 2022. "Modeling Probability Density Functions as Data Objects," Econometrics and Statistics, Elsevier, vol. 21(C), pages 159-178.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoosoon Chang & Soyoung Kim & Joon Y. Park, 2025. "How Do Macroaggregates and Income Distribution Interact Dynamically? A Novel Structural Mixed Autoregression with Aggregate and Functional Variables," Working Papers No 01/2025, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    2. Tadao Hoshino, 2024. "Functional Spatial Autoregressive Models," Papers 2402.14763, arXiv.org, revised Oct 2024.
    3. Okano, Ryo & Imaizumi, Masaaki, 2024. "Distribution-on-distribution regression with Wasserstein metric: Multivariate Gaussian case," Journal of Multivariate Analysis, Elsevier, vol. 203(C).
    4. Ghodrati, Laya & Panaretos, Victor M., 2023. "Minimax rate for optimal transport regression between distributions," Statistics & Probability Letters, Elsevier, vol. 194(C).
    5. Bulté, Matthieu & Sørensen, Helle, 2024. "Medoid splits for efficient random forests in metric spaces," Computational Statistics & Data Analysis, Elsevier, vol. 198(C).
    6. Hron, K. & Menafoglio, A. & Templ, M. & Hrůzová, K. & Filzmoser, P., 2016. "Simplicial principal component analysis for density functions in Bayes spaces," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 330-350.
    7. Yoshiyuki ARATA, 2017. "A Functional Linear Regression Model in the Space of Probability Density Functions," Discussion papers 17015, Research Institute of Economy, Trade and Industry (RIETI).
    8. Yasumasa Matsuda & Rei Iwafuchi, 2025. "Density-valued ARMA models by spline mixtures," DSSR Discussion Papers 146, Graduate School of Economics and Management, Tohoku University.
    9. Won-Ki Seo, 2020. "Functional Principal Component Analysis for Cointegrated Functional Time Series," Papers 2011.12781, arXiv.org, revised Apr 2023.
    10. Zhang, Zhen & Müller, Hans-Georg, 2011. "Functional density synchronization," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2234-2249, July.
    11. S. Barahona & P. Centella & X. Gual-Arnau & M. V. Ibáñez & A. Simó, 2020. "Supervised classification of geometrical objects by integrating currents and functional data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 637-660, September.
    12. Kutta, Tim & Jach, Agnieszka & Haddad, Michel Ferreira Cardia & Kokoszka, Piotr & Wang, Haonan, 2025. "Detection and localization of changes in a panel of densities," Journal of Multivariate Analysis, Elsevier, vol. 205(C).
    13. Genest, Christian & Hron, Karel & Nešlehová, Johanna G., 2023. "Orthogonal decomposition of multivariate densities in Bayes spaces and relation with their copula-based representation," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    14. Shang, Han Lin & Haberman, Steven & Xu, Ruofan, 2022. "Multi-population modelling and forecasting life-table death counts," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 239-253.
    15. Isaiah Andrews & Anna Mikusheva, 2016. "Conditional Inference With a Functional Nuisance Parameter," Econometrica, Econometric Society, vol. 84, pages 1571-1612, July.
    16. Mittelhammer, Ron C. & Judge, George, 2011. "A family of empirical likelihood functions and estimators for the binary response model," Journal of Econometrics, Elsevier, vol. 164(2), pages 207-217, October.
    17. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    18. Schumann, Martin & Severini, Thomas A. & Tripathi, Gautam, 2021. "Integrated likelihood based inference for nonlinear panel data models with unobserved effects," Journal of Econometrics, Elsevier, vol. 223(1), pages 73-95.
    19. Burdejova, P. & Härdle, W. & Kokoszka, P. & Xiong, Q., 2017. "Change point and trend analyses of annual expectile curves of tropical storms," Econometrics and Statistics, Elsevier, vol. 1(C), pages 101-117.
    20. Victor Chernozhukov & Iván Fernández‐Val & Jinyong Hahn & Whitney Newey, 2013. "Average and Quantile Effects in Nonseparable Panel Models," Econometrica, Econometric Society, vol. 81(2), pages 535-580, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:45:y:2024:i:5:p:739-770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.