IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v32y2011ip430-446.html
   My bibliography  Save this article

Spatio‐temporal smoothing and EM estimation for massive remote‐sensing data sets

Author

Listed:
  • Matthias Katzfuss
  • Noel Cressie

Abstract

No abstract is available for this item.

Suggested Citation

  • Matthias Katzfuss & Noel Cressie, 2011. "Spatio‐temporal smoothing and EM estimation for massive remote‐sensing data sets," Journal of Time Series Analysis, Wiley Blackwell, vol. 32, pages 430-446, July.
  • Handle: RePEc:bla:jtsera:v:32:y:2011:i::p:430-446
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Diebold, Francis X & Gardeazabal, Javier & Yilmaz, Kamil, 1994. " On Cointegration and Exchange Rate Dynamics," Journal of Finance, American Finance Association, vol. 49(2), pages 727-735, June.
    2. Baillie, Richard T & Bollerslev, Tim, 2002. "The Message in Daily Exchange Rates: A Conditional-Variance Tale," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 60-68, January.
    3. Nielsen M.O., 2004. "Optimal Residual-Based Tests for Fractional Cointegration and Exchange Rate Dynamics," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 331-345, July.
    4. Shimotsu, Katsumi, 2007. "Gaussian semiparametric estimation of multivariate fractionally integrated processes," Journal of Econometrics, Elsevier, pages 277-310.
    5. Lobato, Ignacio N & Velasco, Carlos, 2000. "Long Memory in Stock-Market Trading Volume," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(4), pages 410-427, October.
    6. Davidson, James & Hashimzade, Nigar, 2009. "Type I and type II fractional Brownian motions: A reconsideration," Computational Statistics & Data Analysis, Elsevier, pages 2089-2106.
    7. Donald W. K. Andrews & Yixiao Sun, 2004. "Adaptive Local Polynomial Whittle Estimation of Long-range Dependence," Econometrica, Econometric Society, pages 569-614.
    8. Violetta Dalla & Liudas Giraitis & Javier Hidalgo, 2006. "Consistent estimation of the memory parameter for nonlinear time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(2), pages 211-251, March.
    9. Dalla, Violetta & Giraitis, Liudas & Hidalgo, Javier, 2006. "Consistent estimation of the memory parameter for nonlinear time series," LSE Research Online Documents on Economics 6813, London School of Economics and Political Science, LSE Library.
    10. Nielsen, Morten Orregaard & Shimotsu, Katsumi, 2007. "Determining the cointegrating rank in nonstationary fractional systems by the exact local Whittle approach," Journal of Econometrics, Elsevier, vol. 141(2), pages 574-596, December.
    11. Velasco, Carlos, 1999. "Non-stationary log-periodogram regression," Journal of Econometrics, Elsevier, vol. 91(2), pages 325-371, August.
    12. Lobato, Ignacio N., 1999. "A semiparametric two-step estimator in a multivariate long memory model," Journal of Econometrics, Elsevier, vol. 90(1), pages 129-153, May.
    13. Abadir, Karim M. & Distaso, Walter & Giraitis, Liudas, 2007. "Nonstationarity-extended local Whittle estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 1353-1384, December.
    14. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    15. Baillie, Richard T & Bollerslev, Tim, 1994. " Cointegration, Fractional Cointegration, and Exchange Rate Dynamics," Journal of Finance, American Finance Association, vol. 49(2), pages 737-745, June.
    16. Frank S. Nielsen, 2008. "Local polynomial Whittle estimation covering non-stationary fractional processes," CREATES Research Papers 2008-28, Department of Economics and Business Economics, Aarhus University.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gromenko, Oleksandr & Kokoszka, Piotr, 2013. "Nonparametric inference in small data sets of spatially indexed curves with application to ionospheric trend determination," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 82-94.
    2. Patrick Vetter & Wolfgang Schmid & Reimund Schwarze, 2016. "Spatio-temporal statistical analysis of the carbon budget of the terrestrial ecosystem," Statistical Methods & Applications, Springer;Società Italiana di Statistica, pages 143-161.
    3. Patrick Vetter & Wolfgang Schmid & Reimund Schwarze, 2016. "Spatio-temporal statistical assessment of anthropogenic CO2 emissions from satellite data," Discussion Paper Series RECAP15 24, RECAP15, European University Viadrina, Frankfurt (Oder).
    4. Finazzi, Francesco & Fassò, Alessandro, 2014. "D-STEM: A Software for the Analysis and Mapping of Environmental Space-Time Variables," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 62(i06).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:32:y:2011:i::p:430-446. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.