IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v67y2018i4p1023-1045.html
   My bibliography  Save this article

Estimating material properties under extreme conditions by using Bayesian model calibration with functional outputs

Author

Listed:
  • J. L. Brown
  • L. B. Hund

Abstract

Dynamic material properties experiments provide access to the most extreme temperatures and pressures attainable in a laboratory setting; the data from these experiments are often used to improve our understanding of material models at these extreme conditions. We apply Bayesian model calibration to dynamic material property applications where the experimental output is a function: velocity over time. This framework can accommodate more uncertainties and facilitate analysis of new types of experiments relative to techniques traditionally used to analyse dynamic material experiments. However, implementation of Bayesian model calibration requires more sophisticated statistical techniques, because of the functional nature of the output as well as parameter and model discrepancy identifiability. We propose a novel Bayesian model calibration process to simplify and improve the estimation of the material property calibration parameters. Specifically, we propose scaling the likelihood function by an effective sample size rather than modelling the auto‐correlation function to accommodate the functional output. Additionally, we propose sensitivity analyses by using the notion of 'modularization' to assess the effect of experiment‐specific nuisance input parameters on estimates of the physical parameters. The Bayesian model calibration framework proposed is applied to dynamic compression of tantalum to extreme pressures, and we conclude that the procedure results in simple, fast and valid inferences on the material properties for tantalum.

Suggested Citation

  • J. L. Brown & L. B. Hund, 2018. "Estimating material properties under extreme conditions by using Bayesian model calibration with functional outputs," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(4), pages 1023-1045, August.
  • Handle: RePEc:bla:jorssc:v:67:y:2018:i:4:p:1023-1045
    DOI: 10.1111/rssc.12273
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12273
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12273?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maupin, Kathryn A. & Swiler, Laura P., 2020. "Model discrepancy calibration across experimental settings," Reliability Engineering and System Safety, Elsevier, vol. 200(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:67:y:2018:i:4:p:1023-1045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.