Bayesian non‐parametric conditional copula estimation of twin data
Author
Abstract
Suggested Citation
DOI: 10.1111/rssc.12237
Download full text from publisher
Other versions of this item:
- Luciana Dalla Valle & Fabrizio Leisen & Luca Rossini, 2016. "Bayesian Nonparametric Conditional Copula Estimation of Twin Data," Working Papers 2016:08, Department of Economics, University of Venice "Ca' Foscari".
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Arbel, Julyan & Crispino, Marta & Girard, Stéphane, 2019. "Dependence properties and Bayesian inference for asymmetric multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
- Grazian, Clara & Dalla Valle, Luciana & Liseo, Brunero, 2022. "Approximate Bayesian conditional copulas," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
- Maximilian Coblenz & Simon Holz & Hans‐Jörg Bauer & Oliver Grothe & Rainer Koch, 2020. "Modelling fuel injector spray characteristics in jet engines by using vine copulas," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 863-886, August.
- Levi, Evgeny & Craiu, Radu V., 2018. "Bayesian inference for conditional copulas using Gaussian Process single index models," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 115-134.
- Lu Lu & Sujit Ghosh, 2024. "Nonparametric Estimation of Conditional Copula Using Smoothed Checkerboard Bernstein Sieves," Mathematics, MDPI, vol. 12(8), pages 1-17, April.
- Huihui Lin & N. Rao Chaganty, 2021. "Multivariate distributions of correlated binary variables generated by pair-copulas," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-14, December.
More about this item
JEL classification:
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:67:y:2018:i:3:p:523-548. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/bla/jorssc/v67y2018i3p523-548.html