IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v57y2008i2p207-225.html
   My bibliography  Save this article

Modelling stochastic order in the analysis of receiver operating characteristic data: Bayesian non-parametric approaches

Author

Listed:
  • Timothy E. Hanson
  • Athanasios Kottas
  • Adam J. Branscum

Abstract

The evaluation of the performance of a continuous diagnostic measure is a commonly encountered task in medical research. We develop Bayesian non-parametric models that use Dirichlet process mixtures and mixtures of Polya trees for the analysis of continuous serologic data. The modelling approach differs from traditional approaches to the analysis of receiver operating characteristic curve data in that it incorporates a stochastic ordering constraint for the distributions of serologic values for the infected and non-infected populations. Biologically such a constraint is virtually always feasible because serologic values from infected individuals tend to be higher than those for non-infected individuals. The models proposed provide data-driven inferences for the infected and non-infected population distributions, and for the receiver operating characteristic curve and corresponding area under the curve. We illustrate and compare the predictive performance of the Dirichlet process mixture and mixture of Polya trees approaches by using serologic data for Johne's disease in dairy cattle. Copyright (c) 2008 Royal Statistical Society.

Suggested Citation

  • Timothy E. Hanson & Athanasios Kottas & Adam J. Branscum, 2008. "Modelling stochastic order in the analysis of receiver operating characteristic data: Bayesian non-parametric approaches," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(2), pages 207-225.
  • Handle: RePEc:bla:jorssc:v:57:y:2008:i:2:p:207-225
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-9876.2007.00609.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yuhui & Hanson, Timothy E., 2014. "Bayesian nonparametric k-sample tests for censored and uncensored data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 335-346.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:57:y:2008:i:2:p:207-225. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/rssssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.