IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v77y2015i4p755-776.html
   My bibliography  Save this article

Regression analysis of sparse asynchronous longitudinal data

Author

Listed:
  • Hongyuan Cao
  • Donglin Zeng
  • Jason P. Fine

Abstract

type="main" xml:id="rssb12086-abs-0001"> We consider estimation of regression models for sparse asynchronous longitudinal observations, where time-dependent responses and covariates are observed intermittently within subjects. Unlike with synchronous data, where the response and covariates are observed at the same time point, with asynchronous data, the observation times are mismatched. Simple kernel-weighted estimating equations are proposed for generalized linear models with either time invariant or time-dependent coefficients under smoothness assumptions for the covariate processes which are similar to those for synchronous data. For models with either time invariant or time-dependent coefficients, the estimators are consistent and asymptotically normal but converge at slower rates than those achieved with synchronous data. Simulation studies evidence that the methods perform well with realistic sample sizes and may be superior to a naive application of methods for synchronous data based on an ad hoc last value carried forward approach. The practical utility of the methods is illustrated on data from a study on human immunodeficiency virus.

Suggested Citation

  • Hongyuan Cao & Donglin Zeng & Jason P. Fine, 2015. "Regression analysis of sparse asynchronous longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(4), pages 755-776, September.
  • Handle: RePEc:bla:jorssb:v:77:y:2015:i:4:p:755-776
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssb.2015.77.issue-4
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Dayu & Zhao, Hui & Sun, Jianguo, 2021. "Regression analysis of asynchronous longitudinal data with informative observation processes," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    2. Zhuowei Sun & Hongyuan Cao & Li Chen, 2022. "Regression analysis of additive hazards model with sparse longitudinal covariates," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 263-281, April.
    3. Zhong, Rou & Liu, Shishi & Li, Haocheng & Zhang, Jingxiao, 2022. "Robust functional principal component analysis for non-Gaussian longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    4. Xinyue Chang & Yehua Li & Yi Li, 2023. "Asynchronous and errorā€prone longitudinal data analysis via functional calibration," Biometrics, The International Biometric Society, vol. 79(4), pages 3374-3387, December.
    5. Ting Li & Huichen Zhu & Tengfei Li & Hongtu Zhu, 2023. "Asynchronous functional linear regression models for longitudinal data in reproducing kernel Hilbert space," Biometrics, The International Biometric Society, vol. 79(3), pages 1880-1895, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:77:y:2015:i:4:p:755-776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.