IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i4p3374-3387.html
   My bibliography  Save this article

Asynchronous and error‐prone longitudinal data analysis via functional calibration

Author

Listed:
  • Xinyue Chang
  • Yehua Li
  • Yi Li

Abstract

In many longitudinal settings, time‐varying covariates may not be measured at the same time as responses and are often prone to measurement error. Naive last‐observation‐carried‐forward methods incur estimation biases, and existing kernel‐based methods suffer from slow convergence rates and large variations. To address these challenges, we propose a new functional calibration approach to efficiently learn longitudinal covariate processes based on sparse functional data with measurement error. Our approach, stemming from functional principal component analysis, calibrates the unobserved synchronized covariate values from the observed asynchronous and error‐prone covariate values, and is broadly applicable to asynchronous longitudinal regression with time‐invariant or time‐varying coefficients. For regression with time‐invariant coefficients, our estimator is asymptotically unbiased, root‐n consistent, and asymptotically normal; for time‐varying coefficient models, our estimator has the optimal varying coefficient model convergence rate with inflated asymptotic variance from the calibration. In both cases, our estimators present asymptotic properties superior to the existing methods. The feasibility and usability of the proposed methods are verified by simulations and an application to the Study of Women's Health Across the Nation, a large‐scale multisite longitudinal study on women's health during midlife.

Suggested Citation

  • Xinyue Chang & Yehua Li & Yi Li, 2023. "Asynchronous and error‐prone longitudinal data analysis via functional calibration," Biometrics, The International Biometric Society, vol. 79(4), pages 3374-3387, December.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:3374-3387
    DOI: 10.1111/biom.13866
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13866
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13866?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard J. Cook & Leilei Zeng & Grace Y. Yi, 2004. "Marginal Analysis of Incomplete Longitudinal Binary Data: A Cautionary Note on LOCF Imputation," Biometrics, The International Biometric Society, vol. 60(3), pages 820-828, September.
    2. Hongyuan Cao & Donglin Zeng & Jason P. Fine, 2015. "Regression analysis of sparse asynchronous longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(4), pages 755-776, September.
    3. John A. Rice & Colin O. Wu, 2001. "Nonparametric Mixed Effects Models for Unequally Sampled Noisy Curves," Biometrics, The International Biometric Society, vol. 57(1), pages 253-259, March.
    4. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    5. Xiongtao Dai & Zhenhua Lin & Hans‐Georg Müller, 2021. "Modeling sparse longitudinal data on Riemannian manifolds," Biometrics, The International Biometric Society, vol. 77(4), pages 1328-1341, December.
    6. Yehua Li & Naisyin Wang & Raymond J. Carroll, 2013. "Selecting the Number of Principal Components in Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1284-1294, December.
    7. Clara Happ & Sonja Greven, 2018. "Multivariate Functional Principal Component Analysis for Data Observed on Different (Dimensional) Domains," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 649-659, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyunghee Han & Pantelis Z Hadjipantelis & Jane-Ling Wang & Michael S Kramer & Seungmi Yang & Richard M Martin & Hans-Georg Müller, 2018. "Functional principal component analysis for identifying multivariate patterns and archetypes of growth, and their association with long-term cognitive development," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-18, November.
    2. Xiuli Du & Xiaohu Jiang & Jinguan Lin, 2023. "Multinomial Logistic Factor Regression for Multi-source Functional Block-wise Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 975-1001, September.
    3. Wong, Raymond K.W. & Zhang, Xiaoke, 2019. "Nonparametric operator-regularized covariance function estimation for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 131-144.
    4. Ming Xiong & Ao Yuan & Hong-Bin Fang & Colin O. Wu & Ming T. Tan, 2022. "Estimation and Hypothesis Test for Mean Curve with Functional Data by Reproducing Kernel Hilbert Space Methods, with Applications in Biostatistics," Mathematics, MDPI, vol. 10(23), pages 1-17, December.
    5. Zhong, Rou & Liu, Shishi & Li, Haocheng & Zhang, Jingxiao, 2022. "Robust functional principal component analysis for non-Gaussian longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    6. Golovkine, Steven & Klutchnikoff, Nicolas & Patilea, Valentin, 2022. "Clustering multivariate functional data using unsupervised binary trees," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    7. Tingting Wang & Linjie Qin & Chao Dai & Zhen Wang & Chenqi Gong, 2023. "Heterogeneous Learning of Functional Clustering Regression and Application to Chinese Air Pollution Data," IJERPH, MDPI, vol. 20(5), pages 1-21, February.
    8. Zhang, Xiaochen & Zhang, Qingzhao & Ma, Shuangge & Fang, Kuangnan, 2022. "Subgroup analysis for high-dimensional functional regression," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    9. Huaihou Chen & Yuanjia Wang, 2011. "A Penalized Spline Approach to Functional Mixed Effects Model Analysis," Biometrics, The International Biometric Society, vol. 67(3), pages 861-870, September.
    10. Chen, Ziqi & Hu, Jianhua & Zhu, Hongtu, 2020. "Surface functional models," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    11. Rahul Ghosal & Arnab Maity & Timothy Clark & Stefano B. Longo, 2020. "Variable selection in functional linear concurrent regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 565-587, June.
    12. Shuang Wu & Hans-Georg Müller, 2011. "Response-Adaptive Regression for Longitudinal Data," Biometrics, The International Biometric Society, vol. 67(3), pages 852-860, September.
    13. Cody Carroll & Hans‐Georg Müller, 2023. "Latent deformation models for multivariate functional data and time‐warping separability," Biometrics, The International Biometric Society, vol. 79(4), pages 3345-3358, December.
    14. Ali Mahzarnia & Jun Song, 2022. "Multivariate functional group sparse regression: Functional predictor selection," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-22, April.
    15. Saart, Patrick W. & Xia, Yingcun, 2022. "Functional time series approach to analyzing asset returns co-movements," Journal of Econometrics, Elsevier, vol. 229(1), pages 127-151.
    16. Fu, Eric & Heckman, Nancy, 2019. "Model-based curve registration via stochastic approximation EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 159-175.
    17. Marta Spreafico & Francesca Ieva & Marta Fiocco, 2023. "Modelling time-varying covariates effect on survival via functional data analysis: application to the MRC BO06 trial in osteosarcoma," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(1), pages 271-298, March.
    18. J. Goldsmith & S. Greven & C. Crainiceanu, 2013. "Corrected Confidence Bands for Functional Data Using Principal Components," Biometrics, The International Biometric Society, vol. 69(1), pages 41-51, March.
    19. Hao Ji & Hans-Georg Müller, 2017. "Optimal designs for longitudinal and functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 859-876, June.
    20. Yueying Wang & Guannan Wang & Li Wang & R. Todd Ogden, 2020. "Simultaneous confidence corridors for mean functions in functional data analysis of imaging data," Biometrics, The International Biometric Society, vol. 76(2), pages 427-437, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:3374-3387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.