IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v177y2014i3p607-623.html
   My bibliography  Save this article

Modelling spatial variability in concentrations of single pollutants and composite air quality indicators in health effects studies

Author

Listed:
  • Helen Powell
  • Duncan Lee

Abstract

type="main" xml:id="rssa12034-abs-0001"> The health impact resulting from a few days of elevated air pollution concentrations has been the focus of much recent research, most of which assesses the effects of single pollutants rather than composite air quality indicators. The average concentrations of these pollutants across the study region are typically estimated by averaging the measurements from the available network of monitors, and this simplistic approach has several deficiencies. Firstly, it is unlikely to be the average concentration across the region under study, owing to the likely non-random placement of the monitoring network. Secondly, the true spatial average is an unknown quantity, and hence the uncertainty in any estimate should be allowed for when estimating its health effects. This paper proposes a novel Bayesian hierarchical framework for addressing these problems, which consists of statistical models for estimating spatially representative measures of single pollutants and composite air quality indicators, and the health effects of these pollution measures while correctly allowing for their uncertainty. This methodological development is motivated by an epidemiological study of the effects of air pollution on respiratory mortality in Greater London, England, between 2003 and 2005. The key findings from this study are that traditional approaches are likely to underestimate the uncertainty in the health effects of air pollution compared with the approach proposed here and increased risks of between 1.4% and 3.1% are associated with 1-standard-deviation increases in the concentrations of ozone, particulate matter (PM 10 ) and the composite air quality indicator that is adopted here.

Suggested Citation

  • Helen Powell & Duncan Lee, 2014. "Modelling spatial variability in concentrations of single pollutants and composite air quality indicators in health effects studies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 177(3), pages 607-623, June.
  • Handle: RePEc:bla:jorssa:v:177:y:2014:i:3:p:607-623
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssa.2014.177.issue-3
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:177:y:2014:i:3:p:607-623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.