Simultaneous selection and inference for varying coefficients with zero regions: a soft‐thresholding approach
Author
Abstract
Suggested Citation
DOI: 10.1111/biom.13900
Download full text from publisher
References listed on IDEAS
- Jingyuan Liu & Runze Li & Rongling Wu, 2014. "Feature Selection for Varying Coefficient Models With Ultrahigh-Dimensional Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 266-274, March.
- Colin Wu & Kai Yu & Chin-Tsang Chiang, 2000. "A Two-Step Smoothing Method for Varying-Coefficient Models with Repeated Measurements," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(3), pages 519-543, September.
- Jianhua Z. Huang, 2002. "Varying-coefficient models and basis function approximations for the analysis of repeated measurements," Biometrika, Biometrika Trust, vol. 89(1), pages 111-128, March.
- R. L. Eubank & Chunfeng Huang & Y. Muñoz Maldonado & Naisyin Wang & Suojin Wang & R. J. Buchanan, 2004. "Smoothing spline estimation in varying‐coefficient models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 653-667, August.
- Kejun He & Heng Lian & Shujie Ma & Jianhua Z. Huang, 2018. "Dimensionality Reduction and Variable Selection in Multivariate Varying-Coefficient Models With a Large Number of Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 746-754, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Linjun Tang & Zhangong Zhou, 2015. "Weighted local linear CQR for varying-coefficient models with missing covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 583-604, September.
- Ye, Mao & Lu, Zhao-Hua & Li, Yimei & Song, Xinyuan, 2019. "Finite mixture of varying coefficient model: Estimation and component selection," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 452-474.
- Tang Qingguo & Cheng Longsheng, 2008. "M-estimation and B-spline approximation for varying coefficient models with longitudinal data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(7), pages 611-625.
- Xiaochao Xia & Hao Ming, 2022. "A Flexibly Conditional Screening Approach via a Nonparametric Quantile Partial Correlation," Mathematics, MDPI, vol. 10(24), pages 1-32, December.
- Liu, Hefei & Song, Xinyuan & Zhang, Baoxue, 2022. "Varying-coefficient hidden Markov models with zero-effect regions," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
- Jun Jin & Tiefeng Ma & Jiajia Dai, 2021. "New efficient spline estimation for varying-coefficient models with two-step knot number selection," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 693-712, July.
- Rahul Ghosal & Arnab Maity & Timothy Clark & Stefano B. Longo, 2020. "Variable selection in functional linear concurrent regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 565-587, June.
- Chin-Tsang Chiang, 2005. "Comparisons between simultaneous and componentwise splines for varying coefficient models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(4), pages 637-653, December.
- Hidetoshi Matsui & Toshihiro Misumi, 2015. "Variable selection for varying-coefficient models with the sparse regularization," Computational Statistics, Springer, vol. 30(1), pages 43-55, March.
- Zhaoping Hong & Yuao Hu & Heng Lian, 2013. "Variable selection for high-dimensional varying coefficient partially linear models via nonconcave penalty," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(7), pages 887-908, October.
- Francesco Bravo, 2020. "Robust estimation and inference for general varying coefficient models with missing observations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 966-988, December.
- Li, XiaoLi & You, JinHong, 2012. "Error covariance matrix correction based approach to functional coefficient regression models with generated covariates," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 263-281.
- A. Antoniadis & I. Gijbels & S. Lambert-Lacroix, 2014. "Penalized estimation in additive varying coefficient models using grouped regularization," Statistical Papers, Springer, vol. 55(3), pages 727-750, August.
- Tang Qingguo & Cheng Longsheng, 2012. "Componentwise B-spline estimation for varying coefficient models with longitudinal data," Statistical Papers, Springer, vol. 53(3), pages 629-652, August.
- Zhang, Shen & Zhao, Peixin & Li, Gaorong & Xu, Wangli, 2019. "Nonparametric independence screening for ultra-high dimensional generalized varying coefficient models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 37-52.
- Lian, Heng, 2015. "Quantile regression for dynamic partially linear varying coefficient time series models," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 49-66.
- Byeong U. Park & Enno Mammen & Young K. Lee & Eun Ryung Lee, 2015. "Varying Coefficient Regression Models: A Review and New Developments," International Statistical Review, International Statistical Institute, vol. 83(1), pages 36-64, April.
- Colin O. Wu & Kai F. Yu, 2002. "Nonparametric Varying-Coefficient Models for the Analysis of Longitudinal Data," International Statistical Review, International Statistical Institute, vol. 70(3), pages 373-393, December.
- Jason P. Estes & Danh V. Nguyen & Lorien S. Dalrymple & Yi Mu & Damla Şentürk, 2014. "Cardiovascular event risk dynamics over time in older patients on dialysis: A generalized multiple-index varying coefficient model approach," Biometrics, The International Biometric Society, vol. 70(3), pages 751-761, September.
- Lv, Shaogao & Fan, Zengyan & Lian, Heng & Suzuki, Taiji & Fukumizu, Kenji, 2020. "A reproducing kernel Hilbert space approach to high dimensional partially varying coefficient model," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:3388-3401. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.