IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v76y2020i4p1053-1063.html
   My bibliography  Save this article

A unified evaluation of differential vaccine efficacy

Author

Listed:
  • Erin E. Gabriel
  • Michael C. Sachs
  • Dean A. Follmann
  • Therese M‐L. Andersson

Abstract

Many infectious diseases are well prevented by proper vaccination. However, when a vaccine is not completely efficacious, there is great interest in determining how the vaccine effect differs in subgroups conditional on measured immune responses postvaccination and also according to the type of infecting agent (eg, strain of a virus). The former is often called correlate of protection (CoP) analysis, while the latter has been called sieve analysis. We propose a unified framework for simultaneously assessing CoP and sieve effects of a vaccine in a large Phase III randomized trial. We use flexible parametric models treating times to infection from different agents as competing risks and estimated maximum likelihood to fit the models. The parametric models under competing risks allow for estimation of both cumulative incidence‐based contrasts and instantaneous rates. We outline the assumptions with which we can link the observable data to the causal contrasts of interest, propose hypothesis testing procedures, and evaluate our proposed methods in an extensive simulation study.

Suggested Citation

  • Erin E. Gabriel & Michael C. Sachs & Dean A. Follmann & Therese M‐L. Andersson, 2020. "A unified evaluation of differential vaccine efficacy," Biometrics, The International Biometric Society, vol. 76(4), pages 1053-1063, December.
  • Handle: RePEc:bla:biomet:v:76:y:2020:i:4:p:1053-1063
    DOI: 10.1111/biom.13211
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13211
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13211?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ying Huang & Peter B. Gilbert, 2011. "Comparing Biomarkers as Principal Surrogate Endpoints," Biometrics, The International Biometric Society, vol. 67(4), pages 1442-1451, December.
    2. David Benkeser & Peter B. Gilbert & Marco Carone, 2019. "Estimating and Testing Vaccine Sieve Effects Using Machine Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1038-1049, July.
    3. Julian Wolfson & Peter Gilbert, 2010. "Statistical Identifiability and the Surrogate Endpoint Problem, with Application to Vaccine Trials," Biometrics, The International Biometric Society, vol. 66(4), pages 1153-1161, December.
    4. Ying Huang & Peter B. Gilbert & Julian Wolfson, 2013. "Design and Estimation for Evaluating Principal Surrogate Markers in Vaccine Trials," Biometrics, The International Biometric Society, vol. 69(2), pages 301-309, June.
    5. Peter B. Gilbert & Michael G. Hudgens, 2008. "Evaluating Candidate Principal Surrogate Endpoints," Biometrics, The International Biometric Society, vol. 64(4), pages 1146-1154, December.
    6. Paul C. Lambert & Patrick Royston, 2009. "Further development of flexible parametric models for survival analysis," Stata Journal, StataCorp LP, vol. 9(2), pages 265-290, June.
    7. M. Juraska & P. B. Gilbert, 2013. "Mark-Specific Hazard Ratio Model with Multivariate Continuous Marks: An Application to Vaccine Efficacy," Biometrics, The International Biometric Society, vol. 69(2), pages 328-337, June.
    8. Ying Huang & Shibasish Dasgupta, 2019. "Likelihood-Based Methods for Assessing Principal Surrogate Endpoints in Vaccine Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 504-523, December.
    9. Dean Follmann, 2006. "Augmented Designs to Assess Immune Response in Vaccine Trials," Biometrics, The International Biometric Society, vol. 62(4), pages 1161-1169, December.
    10. Dean Follmann & Chiung‐Yu Huang, 2018. "Sieve analysis using the number of infecting pathogens," Biometrics, The International Biometric Society, vol. 74(3), pages 1023-1033, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Huang & Shibasish Dasgupta, 2019. "Likelihood-Based Methods for Assessing Principal Surrogate Endpoints in Vaccine Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 504-523, December.
    2. Ying Huang, 2018. "Evaluating principal surrogate markers in vaccine trials in the presence of multiphase sampling," Biometrics, The International Biometric Society, vol. 74(1), pages 27-39, March.
    3. Tyler J. VanderWeele, 2013. "Surrogate Measures and Consistent Surrogates," Biometrics, The International Biometric Society, vol. 69(3), pages 561-565, September.
    4. Ying Huang & Peter B. Gilbert & Julian Wolfson, 2013. "Design and Estimation for Evaluating Principal Surrogate Markers in Vaccine Trials," Biometrics, The International Biometric Society, vol. 69(2), pages 301-309, June.
    5. Gilbert Peter B. & Blette Bryan S. & Hudgens Michael G. & Shepherd Bryan E., 2020. "Post-randomization Biomarker Effect Modification Analysis in an HIV Vaccine Clinical Trial," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 54-69, January.
    6. Corwin M. Zigler & Thomas R. Belin, 2012. "A Bayesian Approach to Improved Estimation of Causal Effect Predictiveness for a Principal Surrogate Endpoint," Biometrics, The International Biometric Society, vol. 68(3), pages 922-932, September.
    7. Ying Huang & Aliasghar Tarkhan, 2020. "Methods for Feature Selection in Down-Selection of Vaccine Regimens Based on Multivariate Immune Response Endpoints," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 353-375, December.
    8. Zhichao Jiang & Shu Yang & Peng Ding, 2022. "Multiply robust estimation of causal effects under principal ignorability," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1423-1445, September.
    9. Gilbert Peter B. & Blette Bryan S. & Hudgens Michael G. & Shepherd Bryan E., 2020. "Post-randomization Biomarker Effect Modification Analysis in an HIV Vaccine Clinical Trial," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 54-69, January.
    10. Zhichao Jiang & Peng Ding & Zhi Geng, 2016. "Principal causal effect identification and surrogate end point evaluation by multiple trials," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 829-848, September.
    11. Ying Huang & Peter B. Gilbert, 2011. "Comparing Biomarkers as Principal Surrogate Endpoints," Biometrics, The International Biometric Society, vol. 67(4), pages 1442-1451, December.
    12. Layla Parast & Tianxi Cai & Lu Tian, 2023. "Testing for heterogeneity in the utility of a surrogate marker," Biometrics, The International Biometric Society, vol. 79(2), pages 799-810, June.
    13. Gilbert Peter B. & Huang Ying & Gabriel Erin E. & Chan Ivan S.F., 2015. "Surrogate Endpoint Evaluation: Principal Stratification Criteria and the Prentice Definition," Journal of Causal Inference, De Gruyter, vol. 3(2), pages 157-175, September.
    14. Emily K. Roberts & Michael R. Elliott & Jeremy M. G. Taylor, 2023. "Solutions for surrogacy validation with longitudinal outcomes for a gene therapy," Biometrics, The International Biometric Society, vol. 79(3), pages 1840-1852, September.
    15. Tomer Hertz & Hasan Ahmed & David P Friedrich & Danilo R Casimiro & Steven G Self & Lawrence Corey & M Juliana McElrath & Susan Buchbinder & Helen Horton & Nicole Frahm & Michael N Robertson & Barney , 2013. "HIV-1 Vaccine-Induced T-Cell Reponses Cluster in Epitope Hotspots that Differ from Those Induced in Natural Infection with HIV-1," PLOS Pathogens, Public Library of Science, vol. 9(6), pages 1-14, June.
    16. Gilbert Peter B. & Hudgens Michael G. & Wolfson Julian, 2011. "Commentary on "Principal Stratification -- a Goal or a Tool?" by Judea Pearl," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-15, September.
    17. Julian Wolfson & Peter Gilbert, 2010. "Statistical Identifiability and the Surrogate Endpoint Problem, with Application to Vaccine Trials," Biometrics, The International Biometric Society, vol. 66(4), pages 1153-1161, December.
    18. Michael G. Hudgens & Peter B. Gilbert, 2009. "Assessing Vaccine Effects in Repeated Low-Dose Challenge Experiments," Biometrics, The International Biometric Society, vol. 65(4), pages 1223-1232, December.
    19. Rui Zhuang & Ying Qing Chen, 2020. "Measuring Surrogacy in Clinical Research," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 295-323, December.
    20. Layla Parast & Lu Tian & Tianxi Cai, 2020. "Assessing the value of a censored surrogate outcome," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 245-265, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:76:y:2020:i:4:p:1053-1063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.