IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v69y2013i4p1022-1032.html
   My bibliography  Save this article

A Comparison of Marginal and Conditional Models for Capture–Recapture Data with Application to Human Rights Violations Data

Author

Listed:
  • Shira Mitchell
  • Al Ozonoff
  • Alan M. Zaslavsky
  • Bethany Hedt-Gauthier
  • Kristian Lum
  • Brent A. Coull

Abstract

No abstract is available for this item.

Suggested Citation

  • Shira Mitchell & Al Ozonoff & Alan M. Zaslavsky & Bethany Hedt-Gauthier & Kristian Lum & Brent A. Coull, 2013. "A Comparison of Marginal and Conditional Models for Capture–Recapture Data with Application to Human Rights Violations Data," Biometrics, The International Biometric Society, vol. 69(4), pages 1022-1032, December.
  • Handle: RePEc:bla:biomet:v:69:y:2013:i:4:p:1022-1032
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/biom.12089
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. K. Tsay & A. Chao, 2001. "Population size estimation for capture-recapture models with applications to epidemiological data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(1), pages 25-36.
    2. Bartolucci, Francesco & Forcina, Antonio, 2006. "A Class of Latent Marginal Models for CaptureRecapture Data With Continuous Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 786-794, June.
    3. Elena Stanghellini & Peter G. M. van der Heijden, 2004. "A Multiple-Record Systems Estimation Method that Takes Observed and Unobserved Heterogeneity into Account," Biometrics, The International Biometric Society, vol. 60(2), pages 510-516, June.
    4. Joseph B. Lang, 2005. "Homogeneous Linear Predictor Models for Contingency Tables," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 121-134, March.
    5. Brent A. Coull & Alan Agresti, 1999. "The Use of Mixed Logit Models to Reflect Heterogeneity in Capture-Recapture Studies," Biometrics, The International Biometric Society, vol. 55(1), pages 294-301, March.
    6. Francesco Bartolucci & Antonio Forcina, 2001. "Analysis of Capture-Recapture Data with a Rasch-Type Model Allowing for Conditional Dependence and Multidimensionality," Biometrics, The International Biometric Society, vol. 57(3), pages 714-719, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Manrique‐Vallier, 2016. "Bayesian population size estimation using Dirichlet process mixtures," Biometrics, The International Biometric Society, vol. 72(4), pages 1246-1254, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Bartolucci & Fulvia Pennoni, 2007. "A Class of Latent Markov Models for Capture–Recapture Data Allowing for Time, Heterogeneity, and Behavior Effects," Biometrics, The International Biometric Society, vol. 63(2), pages 568-578, June.
    2. Danilo Fegatelli & Luca Tardella, 2013. "Improved inference on capture recapture models with behavioural effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(1), pages 45-66, March.
    3. Baffour Bernard & Brown James J. & Smith Peter W.F., 2021. "Latent Class Analysis for Estimating an Unknown Population Size – with Application to Censuses," Journal of Official Statistics, Sciendo, vol. 37(3), pages 673-697, September.
    4. R. King & S. P. Brooks, 2008. "On the Bayesian Estimation of a Closed Population Size in the Presence of Heterogeneity and Model Uncertainty," Biometrics, The International Biometric Society, vol. 64(3), pages 816-824, September.
    5. Di Consiglio Loredana & Tuoto Tiziana, 2015. "Coverage Evaluation on Probabilistically Linked Data," Journal of Official Statistics, Sciendo, vol. 31(3), pages 415-429, September.
    6. Alessio Farcomeni, 2015. "Latent class recapture models with flexible behavioural response," Statistica, Department of Statistics, University of Bologna, vol. 75(1), pages 5-17.
    7. Elena Stanghellini & Peter G. M. van der Heijden, 2004. "A Multiple-Record Systems Estimation Method that Takes Observed and Unobserved Heterogeneity into Account," Biometrics, The International Biometric Society, vol. 60(2), pages 510-516, June.
    8. Thandrayen, Joanne & Wang, Yan, 2009. "A latent variable regression model for capture-recapture data," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2740-2746, May.
    9. Danilo Alunni Fegatelli & Luca Tardella, 2016. "Flexible behavioral capture–recapture modeling," Biometrics, The International Biometric Society, vol. 72(1), pages 125-135, March.
    10. Chang Xuan Mao & Cuiying Yang & Yitong Yang & Wei Zhuang, 2017. "Estimating population sizes with the Rasch model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(3), pages 705-716, June.
    11. Di Cecco Davide & Di Zio Marco & Filipponi Danila & Rocchetti Irene, 2018. "Population Size Estimation Using Multiple Incomplete Lists with Overcoverage," Journal of Official Statistics, Sciendo, vol. 34(2), pages 557-572, June.
    12. Di Consiglio Loredana & Tuoto Tiziana, 2018. "Population Size Estimation and Linkage Errors: the Multiple Lists Case," Journal of Official Statistics, Sciendo, vol. 34(4), pages 889-908, December.
    13. Mevin B. Hooten & Michael R. Schwob & Devin S. Johnson & Jacob S. Ivan, 2023. "Multistage hierarchical capture–recapture models," Environmetrics, John Wiley & Sons, Ltd., vol. 34(6), September.
    14. Brent A. Coull & Alan Agresti, 2000. "Random Effects Modeling of Multiple Binomial Responses Using the Multivariate Binomial Logit-Normal Distribution," Biometrics, The International Biometric Society, vol. 56(1), pages 73-80, March.
    15. Ben C. Stevenson & Rachel M. Fewster & Koustubh Sharma, 2022. "Spatial correlation structures for detections of individuals in spatial capture–recapture models," Biometrics, The International Biometric Society, vol. 78(3), pages 963-973, September.
    16. Peter G. M. van der Heijden & Maarten Cruyff & Paul A. Smith & Christine Bycroft & Patrick Graham & Nathaniel Matheson‐Dunning, 2022. "Multiple system estimation using covariates having missing values and measurement error: Estimating the size of the Māori population in New Zealand," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 156-177, January.
    17. Zhu, Qiansheng & Lang, Joseph B., 2022. "Test-inversion confidence intervals for estimands in contingency tables subject to equality constraints," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    18. Forcina, Antonio, 2008. "Identifiability of extended latent class models with individual covariates," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5263-5268, August.
    19. Francesco Bartolucci & Antonio Forcina, 2001. "Analysis of Capture-Recapture Data with a Rasch-Type Model Allowing for Conditional Dependence and Multidimensionality," Biometrics, The International Biometric Society, vol. 57(3), pages 714-719, September.
    20. J. Andrew Royle, 2009. "Analysis of Capture–Recapture Models with Individual Covariates Using Data Augmentation," Biometrics, The International Biometric Society, vol. 65(1), pages 267-274, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:69:y:2013:i:4:p:1022-1032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.