IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v68y2012i4p1178-1187.html
   My bibliography  Save this article

Improved Estimation of the Noncentrality Parameter Distribution from a Large Number of t-Statistics, with Applications to False Discovery Rate Estimation in Microarray Data Analysis

Author

Listed:
  • Long Qu
  • Dan Nettleton
  • Jack C. M. Dekkers

Abstract

No abstract is available for this item.

Suggested Citation

  • Long Qu & Dan Nettleton & Jack C. M. Dekkers, 2012. "Improved Estimation of the Noncentrality Parameter Distribution from a Large Number of t-Statistics, with Applications to False Discovery Rate Estimation in Microarray Data Analysis," Biometrics, The International Biometric Society, vol. 68(4), pages 1178-1187, December.
  • Handle: RePEc:bla:biomet:v:68:y:2012:i:4:p:1178-1187
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2012.01764.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Ruppert & Dan Nettleton & J. T. Gene Hwang, 2007. "Exploring the Information in p-Values for the Analysis and Planning of Multiple-Test Experiments," Biometrics, The International Biometric Society, vol. 63(2), pages 483-495, June.
    2. Yoav Benjamini & Yosef Hochberg, 2000. "On the Adaptive Control of the False Discovery Rate in Multiple Testing With Independent Statistics," Journal of Educational and Behavioral Statistics, , vol. 25(1), pages 60-83, March.
    3. Smyth Gordon K, 2004. "Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-28, February.
    4. Sun, Wenguang & Cai, T. Tony, 2007. "Oracle and Adaptive Compound Decision Rules for False Discovery Rate Control," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 901-912, September.
    5. Baolin Wu & Zhong Guan & Hongyu Zhao, 2006. "Parametric and Nonparametric FDR Estimation Revisited," Biometrics, The International Biometric Society, vol. 62(3), pages 735-744, September.
    6. Chen-An Tsai & Huey-miin Hsueh & James J. Chen, 2003. "Estimation of False Discovery Rates in Multiple Testing: Application to Gene Microarray Data," Biometrics, The International Biometric Society, vol. 59(4), pages 1071-1081, December.
    7. Mette Langaas & Bo Henry Lindqvist & Egil Ferkingstad, 2005. "Estimating the proportion of true null hypotheses, with application to DNA microarray data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(4), pages 555-572, September.
    8. Christopher Genovese & Larry Wasserman, 2002. "Operating characteristics and extensions of the false discovery rate procedure," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 499-517, August.
    9. Jin, Jiashun & Cai, T. Tony, 2007. "Estimating the Null and the Proportion of Nonnull Effects in Large-Scale Multiple Comparisons," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 495-506, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zehetmayer Sonja & Graf Alexandra C. & Posch Martin, 2015. "Sample size reassessment for a two-stage design controlling the false discovery rate," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(5), pages 429-442, November.
    2. van Iterson Maarten & van de Wiel Mark A. & Boer Judith M. & de Menezes Renée X., 2013. "General power and sample size calculations for high-dimensional genomic data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(4), pages 449-467, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. Tony Cai & Wenguang Sun & Weinan Wang, 2019. "Covariate‐assisted ranking and screening for large‐scale two‐sample inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 187-234, April.
    2. Helmut Finner & Veronika Gontscharuk, 2009. "Controlling the familywise error rate with plug‐in estimator for the proportion of true null hypotheses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 1031-1048, November.
    3. Ruth Heller & Saharon Rosset, 2021. "Optimal control of false discovery criteria in the two‐group model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(1), pages 133-155, February.
    4. Cipolli III, William & Hanson, Timothy & McLain, Alexander C., 2016. "Bayesian nonparametric multiple testing," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 64-79.
    5. T. Tony Cai & Wenguang Sun, 2017. "Optimal screening and discovery of sparse signals with applications to multistage high throughput studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 197-223, January.
    6. Hai Shu & Bin Nan & Robert Koeppe, 2015. "Multiple testing for neuroimaging via hidden Markov random field," Biometrics, The International Biometric Society, vol. 71(3), pages 741-750, September.
    7. Cai, Qingyun, 2018. "A scoring criterion for rejection of clustered p-values," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 180-189.
    8. Haibing Zhao & Wing Kam Fung, 2018. "Controlling mixed directional false discovery rate in multidimensional decisions with applications to microarray studies," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 316-337, June.
    9. Rossell David & Guerra Rudy & Scott Clayton, 2008. "Semi-Parametric Differential Expression Analysis via Partial Mixture Estimation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-29, April.
    10. Wenguang Sun & T. Tony Cai, 2009. "Large‐scale multiple testing under dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 393-424, April.
    11. Tim Bancroft & Chuanlong Du & Dan Nettleton, 2013. "Estimation of False Discovery Rate Using Sequential Permutation p-Values," Biometrics, The International Biometric Society, vol. 69(1), pages 1-7, March.
    12. Li Wang, 2019. "Weighted multiple testing procedure for grouped hypotheses with k-FWER control," Computational Statistics, Springer, vol. 34(2), pages 885-909, June.
    13. Long Qu & Dan Nettleton & Jack C. M. Dekkers, 2012. "A Hierarchical Semiparametric Model for Incorporating Intergene Information for Analysis of Genomic Data," Biometrics, The International Biometric Society, vol. 68(4), pages 1168-1177, December.
    14. Shigeyuki Matsui & Hisashi Noma, 2011. "Estimating Effect Sizes of Differentially Expressed Genes for Power and Sample-Size Assessments in Microarray Experiments," Biometrics, The International Biometric Society, vol. 67(4), pages 1225-1235, December.
    15. Gómez-Villegas Miguel A. & Salazar Isabel & Sanz Luis, 2014. "A Bayesian decision procedure for testing multiple hypotheses in DNA microarray experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(1), pages 49-65, February.
    16. Joshua Habiger & David Watts & Michael Anderson, 2017. "Multiple testing with heterogeneous multinomial distributions," Biometrics, The International Biometric Society, vol. 73(2), pages 562-570, June.
    17. Ferreira José A. & Berkhof Johannes & Souverein Olga & Zwinderman Koos, 2009. "A Multiple Testing Approach to High-Dimensional Association Studies with an Application to the Detection of Associations between Risk Factors of Heart Disease and Genetic Polymorphisms," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-58, January.
    18. Glueck Deborah H & Mandel Jan & Karimpour-Fard Anis & Hunter Lawrence & Muller Keith E, 2008. "Exact Calculations of Average Power for the Benjamini-Hochberg Procedure," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-22, June.
    19. Zhigen Zhao, 2022. "Where to find needles in a haystack?," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 148-174, March.
    20. Izmirlian, Grant, 2020. "Strong consistency and asymptotic normality for quantities related to the Benjamini–Hochberg false discovery rate procedure," Statistics & Probability Letters, Elsevier, vol. 160(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:68:y:2012:i:4:p:1178-1187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.