IDEAS home Printed from https://ideas.repec.org/a/bit/bsrysr/v9y2018i2p69-79n7.html
   My bibliography  Save this article

Autonomous Sensor Data Cleaning in Stream Mining Setting

Author

Listed:
  • Kenda Klemen

    ()

  • Mladenić Dunja

    () (Jožef Stefan Institute, Ljubljana, Slovenia, Jozef Stefan International Postgraduate School,Ljubljana, Slovenia)

Abstract

Background: Internet of Things (IoT), earth observation and big scientific experiments are sources of extensive amounts of sensor big data today. We are faced with large amounts of data with low measurement costs. A standard approach in such cases is a stream mining approach, implying that we look at a particular measurement only once during the real-time processing. This requires the methods to be completely autonomous. In the past, very little attention was given to the most time-consuming part of the data mining process, i.e. data pre-processing. Objectives: In this paper we propose an algorithm for data cleaning, which can be applied to real-world streaming big data. Methods/Approach: We use the short-term prediction method based on the Kalman filter to detect admissible intervals for future measurements. The model can be adapted to the concept drift and is useful for detecting random additive outliers in a sensor data stream. Results: For datasets with low noise, our method has proven to perform better than the method currently commonly used in batch processing scenarios. Our results on higher noise datasets are comparable. Conclusions: We have demonstrated a successful application of the proposed method in real-world scenarios including the groundwater level, server load and smart-grid data

Suggested Citation

  • Kenda Klemen & Mladenić Dunja, 2018. "Autonomous Sensor Data Cleaning in Stream Mining Setting," Business Systems Research, Sciendo, vol. 9(2), pages 69-79, July.
  • Handle: RePEc:bit:bsrysr:v:9:y:2018:i:2:p:69-79:n:7
    as

    Download full text from publisher

    File URL: https://www.degruyter.com/view/j/bsrj.2018.9.issue-2/bsrj-2018-0020/bsrj-2018-0020.xml?format=INT
    Download Restriction: no

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bit:bsrysr:v:9:y:2018:i:2:p:69-79:n:7. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla). General contact details of provider: https://www.sciendo.com/services/journals .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.