IDEAS home Printed from https://ideas.repec.org/a/bes/jnlbes/v19y2001i2p233-44.html
   My bibliography  Save this article

Tests for Asymmetry in Possibly Nonstationary Time Series Data

Author

Listed:
  • Shin, Dong Wan
  • Lee, Oesook

Abstract

Tests for asymmetric adjustment in possibly nonstationary, nearly nonstationary, or stationary time series data are developed. The asymmetry is modeled by the momentum threshold autoregressive model of Enders and Granger and an extension of it. The tests are t-type tests and Wald tests based on instrumental-variable estimators and are asymptotically normal or chi-squared regardless of stationarity/nonstationarity of data-generating processes. This is in contrast to the fact that the t tests and the Wald tests based on the ordinary least squares estimator (OLSE) are asymptotically normal and chi-squared, respectively, only under stationarity and are thus statistically invalid under nonstationarity. A Monte Carlo simulation shows that the proposed tests have stable sizes. Powers of the proposed tests against stationary alternatives are comparable to those of the OLSE-based tests. The Monte Carlo study also shows that the new estimators are less biased than the OLSE when data-generating processes are random walks. The proposed tests are applied to a monthly U.K. interest-rate dataset to find evidences for asymmetry in directions of adjustments as well as in amounts of adjustments.

Suggested Citation

  • Shin, Dong Wan & Lee, Oesook, 2001. "Tests for Asymmetry in Possibly Nonstationary Time Series Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 233-244, April.
  • Handle: RePEc:bes:jnlbes:v:19:y:2001:i:2:p:233-44
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:19:y:2001:i:2:p:233-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.