Author
Listed:
- Ghada N. Hassanein
- Omaima A. Alhaddad
- Mostafa A. Ellabban
Abstract
Purpose: In this work, we mix two simple nematic liquid crystals (NLCs) and investigated the binaryNLCs mixtures of 7CB/PCH5 of different mixing ratios. Methodology: The pure liquid crystals 7CB and PCH5 and binary mixtures of them of high temperature stability were thermally analyzed by differential scanning calorimetry. The mixture 7CB/PCH5:30/70 wt% has the highest thermal stability with a nematic-isotropic (N-I) transition temperature at 50oC. The electrooptic properties of 7CB, PCH5, and the mixture 7CB/PCH5:30/70 wt% at room temperature were also investigated using an amplitude modulated electric signal (1 kHz - 100 Hz) by increasing diving peak voltage from 0 V to 10 V. The threshold volage is relatively reduced for the binary mixture in comparison to that value for PCH5. In comparison to the pure LCs, the mixture 7CB/PCH5:30/70 wt% has the fastest response times of values 2.36 ms total time response, 0.41 ms rise time, and 1.95 ms fall time. It has also the highest contrast ratio. Moreover, it has a maximum measured transmission that is higher than those for PCH5 and 7CB by about 17 % and 8%, respectively, at a field strength of 2V/mm. Findings: The obtained results indicate that the electrooptic properties of PCH5 was improved when mixed with a proper ratio of 7CB, of lower cost, more stablity , and higher potential for photonic applications. Unique Contriburibution to Theory, Practice and Policy: This expermental study shows that simply by mixing two relatively low cost NLCs materials, one of high thermal stability and low electro-optic properties with other one of low thermal stability and better electro-optic properties; this would improve the stability, response, and transmition of the binary mixture. If the a suitable driving method is applied, without doping with other orgnic or inorganic matrial.
Suggested Citation
Ghada N. Hassanein & Omaima A. Alhaddad & Mostafa A. Ellabban, 2024.
"Binary Nematic Liquid Crystals Mixture with Enhanced Electro-Optics Properties for Photonic Applications,"
American Journal of Physical Sciences, IPRJB, vol. 2(1), pages 26-39.
Handle:
RePEc:bdu:ojajps:v:2:y:2024:i:1:p:26-39:id:2562
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdu:ojajps:v:2:y:2024:i:1:p:26-39:id:2562. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chief Editor (email available below). General contact details of provider: https://iprjb.org/journals/index.php/AJPS/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.