Author
Listed:
- John Makunda
(Department of Mathematics and Actuarial Science, Catholic University of Eastern Africa)
- Helen Waititu
(Department of Mathematics and Actuarial Science, Catholic University of Eastern Africa)
- Cornelius Nyakundi
(Department of Mathematics and Actuarial Science, Catholic University of Eastern Africa)
Abstract
Background: Mental health assessments across diverse populations provide valuable insights into the prevalence and patterns of mental health issues. However, the complexity and volume of longitudinal data present challenges in extracting meaningful information for effective intervention. Clustering methods have emerged as powerful tools for identifying hidden structures within such datasets, yet a comprehensive evaluation of these techniques in the context of international mental health assessments is lacking. Objectives: This study aims to systematically evaluate various clustering techniques applied to longitudinal mental health data from international assessments. The focus is on understanding how different methods capture and reveal patterns and subgroups within the data, thereby guiding targeted mental health interventions. Methods: We applied and compared three clustering techniques—K-Means Clustering, Hierarchical Clustering, and Gaussian Mixture Models (GMM)—to longitudinal mental health assessment data. We assessed the performance of these methods in identifying meaningful clusters, considering their strengths and limitations in capturing the complexity of mental health trajectories. Results: Our analysis revealed distinct clusters reflecting varying levels of mental health severity and symptom trajectories. K-Means identified broad clusters, while Hierarchical Clustering provided insights into the data’s hierarchical structure. GMM offered a probabilistic view, highlighting overlapping mental health experiences among individuals. Each method contributed uniquely to understanding the longitudinal patterns in the data. Implications: The findings underscore the importance of using a multi-faceted approach to clustering in mental health research. By revealing different dimensions of mental health trajectories, this study provides valuable insights for tailoring interventions and resource allocation. The results highlight the need for ongoing evaluation of clustering techniques to enhance their applicability in diverse international contexts.
Suggested Citation
John Makunda & Helen Waititu & Cornelius Nyakundi, 2024.
"Unveiling Longitudinal Patterns in International Mental Health Assessments: A Systematic Evaluation of Clustering Techniques,"
International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(9), pages 530-547, September.
Handle:
RePEc:bcp:journl:v:8:y:2024:i:9:p:530-547
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bcp:journl:v:8:y:2024:i:9:p:530-547. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Pawan Verma (email available below). General contact details of provider: https://rsisinternational.org/journals/ijriss/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.