Author
Listed:
- Showalter, John W.
(Adjunct Professor, George Washington University, USA)
- Showalter, Grace L.
(Director of Clinical Transformation, AccentCare, USA)
Abstract
Traditional methods of developing and implementing artificial intelligence (AI) inhibit widespread workplace adoption, because the development of AI has focused on advancing existing, and discovering new, technologies rather than solving industry problems. This paper discusses how, to create scalable and sustainable AI adoption, form must follow function, rather than function being driven by form. This requires a new framework for understanding AI that focuses on the function of the solution rather than the form of the technology. A functional framework for AI categorises solutions by human impact on tasks and decisions: automating AI eliminates human effort; augmenting AI improves human efficacy; accelerating AI transforms systems to increase human efficiency. A human-centred understanding of AI facilitates a persona-based approach to implementation and adoption. Robust personas of target end users can be created by understanding their preferred learning styles using Kolb’s experiential learning theory (KELT) and identifying the elements of motivation that empower them to change using the theory of planned behaviour (TPB). Layering KELT and TPB on top of the functional AI framework allows for the creation of a significance matrix to understand natural synergy or discord that exists between AI solutions and target end users. In addition to the significance matrix, personas must identify and define value for target end users, which combines with other elements to create appeal. Appeal can be leveraged to create scalable implementation and adoption plans that function across industries and exploit natural synergies. Healthcare industry examples are provided to demonstrate the overlay of the functional AI framework with KELT and TPB, along with persona-defined value, to drive adoption. Strategies for mitigating discordance between AI solutions and end users, and increasing appeal, are described.
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
More about this item
Keywords
;
;
;
;
;
;
;
;
JEL classification:
- M15 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - IT Management
- G2 - Financial Economics - - Financial Institutions and Services
Statistics
Access and download statistics
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aza:airwa0:y:2021:v:1:i:2:p:142-156. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Henry Stewart Talks (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.