IDEAS home Printed from https://ideas.repec.org/a/ahs/journl/v10y2025i2p781-804.html
   My bibliography  Save this article

Bir Makine Öğrenimi Uygulaması: G7 Ülkelerinde Finansal Kriz Tahminleme

Author

Listed:
  • Merve Mert Sarıtaş
  • Mert Ural

Abstract

Bu çalışma, sistemik bankacılık krizlerini tahmin etmede makine öğrenmesi yöntemlerinin etkinliğini, özellikle karmaşık ve doğrusal olmayan örüntüleri yakalama yeteneğiyle öne çıkan XGBoost algoritmasını kullanarak araştırmaktadır. 1870-2020 dönemi için G7 ülkelerine ait finansal ve makroekonomik veriler kullanılarak sistemik bankacılık kriz tahmininde XGBoost tabanlı bir model geliştirilmiştir. Ayrıca, modelin 'kara kutu' doğasını aşarak karar alma süreçlerini derinlemesine anlamlandırmak amacıyla SHAP (SHapley Additive exPlanations) yöntemleri uygulanarak model sonuçları arasındaki nedensel ilişkiler analiz edilmiş, böylece tahmin edici değişkenler ile kriz riski arasındaki nedensel ilişkiler şeffaf bir şekilde analiz edilmiştir. Bulgular, XGBoost'un yüksek tahmin performansı sergileyerek uygulayıcılar ve politika yapıcılar için kriz riskini değerlendirmede yeni olanaklar sunduğunu göstermektedir. Ek olarak SHAP değerleri, tahmin edici değişkenler ile kriz riski arasındaki karmaşık ilişkileri ortaya çıkararak makine öğrenimi modellerinin şeffaflığını ve hesap verebilirliğini önemli ölçüde artırmaktadır. Bu yaklaşım, finansal krizlerin temel ekonomik itici güçlerini belirleme konusunda sağlam ve güvenilir bir analitik altyapı sunarak finansal kriz tahmininde makine öğrenmesi yöntemlerinin potansiyelini vurgulamaktadır.

Suggested Citation

  • Merve Mert Sarıtaş & Mert Ural, 2025. "Bir Makine Öğrenimi Uygulaması: G7 Ülkelerinde Finansal Kriz Tahminleme," Journal of Research in Economics, Politics & Finance, Ersan ERSOY, vol. 10(2), pages 781-804.
  • Handle: RePEc:ahs:journl:v:10:y:2025:i:2:p:781-804
    DOI: 10.30784/epfad.1643262
    as

    Download full text from publisher

    File URL: https://dergipark.org.tr/tr/download/article-file/4624814
    Download Restriction: no

    File URL: https://libkey.io/10.30784/epfad.1643262?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
    • G01 - Financial Economics - - General - - - Financial Crises
    • N10 - Economic History - - Macroeconomics and Monetary Economics; Industrial Structure; Growth; Fluctuations - - - General, International, or Comparative

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ahs:journl:v:10:y:2025:i:2:p:781-804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ersan Ersoy (email available below). General contact details of provider: https://epfjournal.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.