IDEAS home Printed from https://ideas.repec.org/a/ags/ccsesa/230514.html
   My bibliography  Save this article

Soil Organic Carbon and Nitrogen Decomposition in Fecal Manure of Cattle Fed Browse/Maize Silages

Author

Listed:
  • Kato, Habib
  • Mulebeke, Robert
  • Bareeba, Felix Budara
  • Sabiiti, Elly Nyambobo

Abstract

Soil organic carbon (C) and nitrogen (N) decomposition in fecal manure of cattle fed browses of Calliandra (Calliandra calothyrsus), Gliricidia (Gliricidia sepium) and Leucaena (Leucaena leucocephala) browse/maize silage mixtures and maize (Zea mays) silage alone when applied to the soil were investigated in a pot experiment in comparison to the corresponding silages fed. Maize silage alone had the lowest N and a larger C: N ratio, making it a poor quality compost when applied to the soil, but compared to the browse/maize silage mixtures it had the highest level of soluble N as non-protein nitrogen (NPN) which makes much of its N available for soil microbial decomposition of its organic C. Calliandra browse/maize silage mixture had the highest level of fiber-bound N (ADFN), which reduces N availability for soil microbial decomposition of its organic C in spite of its high N content and a narrower C: N ratio. Fecal manure from maize silage alone had a lower level of N and a wider C: N ratio than fecal manure from the other silages fed which would affect its decomposition in the soil, but it had the lowest level of ADFN and much of its N is made available for soil microbial decomposition of its organic C. Soil samples after 12 weeks of the experiment showed that Calliandra browse/maize silage mixture maintained the highest level of C in the soil, while maize silage alone maintained the lowest level. Also soils treated with fecal manure from the other browse/maize silage mixtures maintained higher levels of C than fecal manure from maize silage alone. Organic C levels were lowest at 8 weeks of the experiment for all treatments and rose to the original levels at 12 weeks which could have been as a result of biotic and hydrologic factors coupled with soil aggregation. Decomposition of organic N followed a similar trend as organic C. The two elements are linked in both plant inputs in the soil and in the eventual soil humic substances. The soils treated with browse/maize silage mixtures maintained C: N ratios that were similar to that of the control soil and higher than those of the fecal manure treatments. Thus, in spite of the added silage materials to the soil, rapid decomposition of organic C could not occur to reflect benefits of adding the silage materials to the soil. Thus, fecal manure, particularly from feeding animals on browse/forage diets is more beneficial in the soil as it would decompose more readily releasing the plant nutrients they contain.

Suggested Citation

  • Kato, Habib & Mulebeke, Robert & Bareeba, Felix Budara & Sabiiti, Elly Nyambobo, 2014. "Soil Organic Carbon and Nitrogen Decomposition in Fecal Manure of Cattle Fed Browse/Maize Silages," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 3(3).
  • Handle: RePEc:ags:ccsesa:230514
    DOI: 10.22004/ag.econ.230514
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/230514/files/p50_50-55_.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.230514?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    Labor and Human Capital;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ccsesa:230514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: http://www.ccsenet.org/sar .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.