IDEAS home Printed from https://ideas.repec.org/a/ags/aieabj/302123.html
   My bibliography  Save this article

Estimating a Dual Value Function as a Meta-Model of a Detailed Dynamic Mathematical Programming Model

Author

Listed:
  • Seidel, Claudia
  • Britz, Wolfgang

Abstract

Mathematical programming (MP) is a widespread approach to depict production and investment decisions of agents in agent-based models (ABM) related to agriculture. However, introducing dynamics and indivisibilities in MP models renders their solution computing time intensive. We present a meta-modeling approach as an alternative to directly integrating MP in an ABM. Specifically, we estimate a dual symmetric normalized quadratic (SNQ) value function from a set of MP solutions. The approach allows us to depict relationships between key attributes, like the farm endowment with (quasi-) fixed factors and discounted farm household incomes, without modeling the technology in detail. The estimated functions are integrated in the ABM to derive agents’ decisions. The meta-modeling approach relaxes computational restrictions such that spatial interactions in large regions can be simulated improving our understanding of structural change in agriculture. It can also be used to extrapolate to farming populations where data availability might be restricted.

Suggested Citation

  • Seidel, Claudia & Britz, Wolfgang, 2019. "Estimating a Dual Value Function as a Meta-Model of a Detailed Dynamic Mathematical Programming Model," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 8(1), April.
  • Handle: RePEc:ags:aieabj:302123
    DOI: 10.22004/ag.econ.302123
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/302123/files/Seidel_Britz_08-01-2019_BAE.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.302123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schaefer, David & Britz, Wolfgang & Kuhn, Till, 2020. "Modelling policy induced manure transports at large scale using an agent-based simulation model," Discussion Papers 305270, University of Bonn, Institute for Food and Resource Economics.

    More about this item

    Keywords

    Research Methods/ Statistical Methods;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aieabj:302123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aieaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.