IDEAS home Printed from https://ideas.repec.org/a/aen/journl/ej40-4-bertran.html
   My bibliography  Save this article

Co-firing Coal with Biomass under Mandatory Obligation for Renewable Electricity: Implication for the Electricity Mix

Author

Listed:
  • Vincent Bertrand

Abstract

This paper analyses the effect of recognizing co-firing coal with biomass as renewable electricity. We provide simulations for the French and German electricity mix. Results indicate that, if co-firing is recognized as a renewable, coal may crowd-out traditional renewables with increased generation and additional investments. Regarding CO2 emissions, we find surges when co-firing is recognized as a renewable. The rise is more significant in Germany due to greater coal capacity. In France, the magnitude depends on the share of nuclear with a lower increase when old nuclear plants are prolonged. Finally, we find that recognizing co-firing as a renewable reduces the overall costs for electricity. We balance the cost saving with the increased social cost from higher CO2 emissions. Results show that the cost saving is lower than the increased carbon cost for society with carbon valuation around 100 Euros/tCO2, except in France when old nuclear plants are not decommissioned.

Suggested Citation

  • Vincent Bertrand, 2019. "Co-firing Coal with Biomass under Mandatory Obligation for Renewable Electricity: Implication for the Electricity Mix," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
  • Handle: RePEc:aen:journl:ej40-4-bertran
    as

    Download full text from publisher

    File URL: http://www.iaee.org/en/publications/ejarticle.aspx?id=3378
    Download Restriction: Access to full text is restricted to IAEE members and subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Weigt, Hannes & Ellerman, Denny & Delarue, Erik, 2013. "CO2 abatement from renewables in the German electricity sector: Does a CO2 price help?," Energy Economics, Elsevier, vol. 40(S1), pages 149-158.
    2. Vincent Bertrand & Elodie Le Cadre, 2015. "Simulating the use of biomass in electricity with the green electricity simulate model: An application to the French power generation," Working Papers 1503, Chaire Economie du climat.
    3. Rentizelas, Athanasios A. & Tolis, Athanasios I. & Tatsiopoulos, Ilias P., 2012. "Investment planning in electricity production under CO2 price uncertainty," International Journal of Production Economics, Elsevier, vol. 140(2), pages 622-629.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Osorio, Sebastian & Pietzcker, Robert C. & Pahle, Michael & Edenhofer, Ottmar, 2020. "How to deal with the risks of phasing out coal in Germany," Energy Economics, Elsevier, vol. 87(C).
    2. Gavard, Claire, 2016. "Carbon price and wind power support in Denmark," Energy Policy, Elsevier, vol. 92(C), pages 455-467.
    3. Morales-España, Germán & Nycander, Elis & Sijm, Jos, 2021. "Reducing CO2 emissions by curtailing renewables: Examples from optimal power system operation," Energy Economics, Elsevier, vol. 99(C).
    4. Irawan, Chandra Ade & Jones, Dylan & Hofman, Peter S. & Zhang, Lina, 2023. "Integrated strategic energy mix and energy generation planning with multiple sustainability criteria and hierarchical stakeholders," European Journal of Operational Research, Elsevier, vol. 308(2), pages 864-883.
    5. Delarue, Erik & Van den Bergh, Kenneth, 2016. "Carbon mitigation in the electric power sector under cap-and-trade and renewables policies," Energy Policy, Elsevier, vol. 92(C), pages 34-44.
    6. repec:dui:wpaper:1504 is not listed on IDEAS
    7. Branger, Frédéric & Quirion, Philippe, 2015. "Reaping the carbon rent: Abatement and overallocation profits in the European cement industry, insights from an LMDI decomposition analysis," Energy Economics, Elsevier, vol. 47(C), pages 189-205.
    8. Caurla, Sylvain & Bertrand, Vincent & Delacote, Philippe & Le Cadre, Elodie, 2018. "Heat or power: How to increase the use of energy wood at the lowest cost?," Energy Economics, Elsevier, vol. 75(C), pages 85-103.
    9. Anke, Carl-Philipp & Hobbie, Hannes & Schreiber, Steffi & Möst, Dominik, 2020. "Coal phase-outs and carbon prices: Interactions between EU emission trading and national carbon mitigation policies," Energy Policy, Elsevier, vol. 144(C).
    10. Bruninx, Kenneth & Ovaere, Marten & Delarue, Erik, 2020. "The long-term impact of the market stability reserve on the EU emission trading system," Energy Economics, Elsevier, vol. 89(C).
    11. Chun, Dohyun & Cho, Hoon & Kim, Jihun, 2022. "The relationship between carbon-intensive fuel and renewable energy stock prices under the emissions trading system," Energy Economics, Elsevier, vol. 114(C).
    12. Forbes, Kevin F. & Zampelli, Ernest M., 2019. "Wind energy, the price of carbon allowances, and CO2 emissions: Evidence from Ireland," Energy Policy, Elsevier, vol. 133(C).
    13. Rentizelas, Athanasios & Georgakellos, Dimitrios, 2014. "Incorporating life cycle external cost in optimization of the electricity generation mix," Energy Policy, Elsevier, vol. 65(C), pages 134-149.
    14. Ahn, Young-Hwan & Jeon, Wooyoung, 2019. "Power sector reform and CO2 abatement costs in Korea," Energy Policy, Elsevier, vol. 131(C), pages 202-214.
    15. Zerrahn, Alexander & Krekel, Christian, 2015. "Sowing the Wind and Reaping the Whirlwind? The Effect of Wind Turbines on Residential Well-Being," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112956, Verein für Socialpolitik / German Economic Association.
    16. Benoît Chèze, Julien Chevallier, Nicolas Berghmans, and Emilie Alberola, 2020. "On the CO2 Emissions Determinants During the EU ETS Phases I and II: A Plant-level Analysis Merging the EUTL and Platts Power Data," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 153-184.
    17. Anke, Carl-Philipp & Möst, Dominik, 2021. "The expansion of RES and the EU ETS – valuable addition or conflicting instruments?," Energy Policy, Elsevier, vol. 150(C).
    18. Graf, Christoph & Marcantonini, Claudio, 2017. "Renewable energy and its impact on thermal generation," Energy Economics, Elsevier, vol. 66(C), pages 421-430.
    19. Federica Cucchiella & Idiano D Adamo & Massimo Gastaldi, 2015. "Profitability Analysis for Biomethane: A Strategic Role in the Italian Transport Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 440-449.
    20. Jie Wu & Ying Fan & Yan Xia, 2017. "How Can China Achieve Its Nationally Determined Contribution Targets Combining Emissions Trading Scheme and Renewable Energy Policies?," Energies, MDPI, vol. 10(8), pages 1-20, August.
    21. Descateaux, Paul & Astudillo, Miguel F. & Amor, Mourad Ben, 2016. "Assessing the life cycle environmental benefits of renewable distributed generation in a context of carbon taxes: The case of the Northeastern American market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1178-1189.

    More about this item

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aen:journl:ej40-4-bertran. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Williams (email available below). General contact details of provider: https://edirc.repec.org/data/iaeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.