IDEAS home Printed from https://ideas.repec.org/a/adr/anecst/y2016i123-124p77-101.html
   My bibliography  Save this article

Tests of the Constancy of Conditional Correlations of Unknown Functional Form in Multivariate GARCH Models

Author

Listed:
  • Anne Péguin-Feissolle
  • Bilel Sanhaji

Abstract

We introduce two tests for the constancy of conditional correlations of unknown functional form in multivariate GARCH models. The first test is based on artificial neural networks and the second on a Taylor expansion of each unknown conditional correlation. They can be seen as general misspecification tests for a large set of multivariate GARCH-type models. We investigate their size and their power through Monte Carlo experiments. Moreover, we study the robustness of these tests to nonnormality by simulating some models, such as the GARCH - t and Beta - t - EGARCH. We give some illustrative empirical examples based on financial data.

Suggested Citation

  • Anne Péguin-Feissolle & Bilel Sanhaji, 2016. "Tests of the Constancy of Conditional Correlations of Unknown Functional Form in Multivariate GARCH Models," Annals of Economics and Statistics, GENES, issue 123-124, pages 77-101.
  • Handle: RePEc:adr:anecst:y:2016:i:123-124:p:77-101
    DOI: 10.15609/annaeconstat2009.123-124.0077
    as

    Download full text from publisher

    File URL: http://www.jstor.org/stable/10.15609/annaeconstat2009.123-124.0077
    Download Restriction: no

    File URL: https://libkey.io/10.15609/annaeconstat2009.123-124.0077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Péguin-Feissolle, Anne & Strikholm, Birgit & Teräsvirta, Timo, 2007. "Testing the Granger noncausality hypothesis in stationary nonlinear models of unknown functional form," SSE/EFI Working Paper Series in Economics and Finance 672, Stockholm School of Economics, revised 18 Jan 2012.
    2. repec:adr:anecst:y:2000:i:59 is not listed on IDEAS
    3. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    4. Tse, Y. K., 2000. "A test for constant correlations in a multivariate GARCH model," Journal of Econometrics, Elsevier, vol. 98(1), pages 107-127, September.
    5. repec:adr:anecst:y:2007:i:85:p:07 is not listed on IDEAS
    6. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024, November.
    7. Annastiina Silvennoinen & Timo Teräsvirta, 2005. "Multivariate Autoregressive Conditional Heteroskedasticity with Smooth Transitions in Conditional Correlations," Research Paper Series 168, Quantitative Finance Research Centre, University of Technology, Sydney.
    8. Marie Lebreton & Anne Péguin, 2007. "Robust tests for heteroscedasticity in a general framework," Post-Print hal-00282179, HAL.
    9. repec:adr:anecst:y:2000:i:59:p:08 is not listed on IDEAS
    10. Jeantheau, Thierry, 1998. "Strong Consistency Of Estimators For Multivariate Arch Models," Econometric Theory, Cambridge University Press, vol. 14(1), pages 70-86, February.
    11. Anne Péguin-Feissolle & Bilel Sanhaji, 2015. "Testing the Constancy of Conditional Correlations in Multivariate GARCH-type Models (Extended Version with Appendix)," AMSE Working Papers 1516, Aix-Marseille School of Economics, France.
    12. Harvey, Andrew & Sucarrat, Genaro, 2014. "EGARCH models with fat tails, skewness and leverage," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 320-338.
    13. Marie Lebreton & Anne Peguin-Feissolle, 2007. "Robust Tests for Heteroscedasticity in a general Framework," Annals of Economics and Statistics, GENES, issue 85, pages 159-187.
    14. repec:adr:anecst:y:2007:i:85 is not listed on IDEAS
    15. Renaud Caulet & Anne Peguin-Feissolle, 2000. "Un test d'hétéroscédasticité conditionnelle inspiré de la modélisation en termes de réseaux neuronaux artificiels," Post-Print halshs-00390155, HAL.
    16. Annastiina Silvennoinen & Timo Ter�svirta, 2015. "Modeling Conditional Correlations of Asset Returns: A Smooth Transition Approach," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 174-197, February.
    17. Berben, Robert-Paul & Jansen, W. Jos, 2005. "Comovement in international equity markets: A sectoral view," Journal of International Money and Finance, Elsevier, vol. 24(5), pages 832-857, September.
    18. Marie Lebreton & Anne Peguin-Feissolle, 2007. "Robust tests for heteroscedasticity in a general framework," Post-Print halshs-00390142, HAL.
    19. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    20. Timo Teräsvirta & Chien‐Fu Lin & Clive W. J. Granger, 1993. "Power Of The Neural Network Linearity Test," Journal of Time Series Analysis, Wiley Blackwell, vol. 14(2), pages 209-220, March.
    21. Renaud Caulet & Anne Peguin-Feissolle, 2000. "Un test d'hétéroscédasticité conditionnelle inspiré de la modélisation en termes de réseaux neuronaux artificiels," Annals of Economics and Statistics, GENES, issue 59, pages 177-197.
    22. Peguin-Feissolle, A. & Terasvirta, T., 1999. "A General Framework for Testing the Granger Noncausality Hypothesis," G.R.E.Q.A.M. 99a42, Universite Aix-Marseille III.
    23. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    24. Castle, Jennifer L. & Hendry, David F., 2010. "A low-dimension portmanteau test for non-linearity," Journal of Econometrics, Elsevier, vol. 158(2), pages 231-245, October.
    25. Bera, Anil K. & Kim, Sangwhan, 2002. "Testing constancy of correlation and other specifications of the BGARCH model with an application to international equity returns," Journal of Empirical Finance, Elsevier, vol. 9(2), pages 171-195, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuffart Thomas & Flachaire Emmanuel & Péguin-Feissolle Anne, 2018. "Testing for misspecification in the short-run component of GARCH-type models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(5), pages 1-17, December.
    2. Annastiina Silvennoinen & Timo Teräsvirta, 2017. "Consistency and asymptotic normality of maximum likelihood estimators of a multiplicative time-varying smooth transition correlation GARCH model," CREATES Research Papers 2017-28, Department of Economics and Business Economics, Aarhus University.
    3. Jian Kang & Johan Stax Jakobsen & Annastiina Silvennoinen & Timo Teräsvirta & Glen Wade, 2022. "A parsimonious test of constancy of a positive definite correlation matrix in a multivariate time-varying GARCH model," CREATES Research Papers 2022-01, Department of Economics and Business Economics, Aarhus University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anne Péguin-Feissolle & Bilel Sanhaji, 2015. "Testing the Constancy of Conditional Correlations in Multivariate GARCH-type Models (Extended Version with Appendix)," Working Papers halshs-01133751, HAL.
    2. Silvennoinen, Annastiina & Teräsvirta, Timo, 2007. "Multivariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 669, Stockholm School of Economics, revised 18 Jan 2008.
    3. Tomoaki Nakatani & Timo Terasvirta, 2009. "Testing for volatility interactions in the Constant Conditional Correlation GARCH model," Econometrics Journal, Royal Economic Society, vol. 12(1), pages 147-163, March.
    4. Chou, Ray Yeutien & Cai, Yijie, 2009. "Range-based multivariate volatility model with double smooth transition in conditional correlation," Global Finance Journal, Elsevier, vol. 20(2), pages 137-152.
    5. Annastiina Silvennoinen & Timo Teräsvirta, 2017. "Consistency and asymptotic normality of maximum likelihood estimators of a multiplicative time-varying smooth transition correlation GARCH model," CREATES Research Papers 2017-28, Department of Economics and Business Economics, Aarhus University.
    6. De Santis, Roberto A. & Stein, Michael, 2016. "Correlation changes between the risk-free rate and sovereign yields of euro area countries," Working Paper Series 1979, European Central Bank.
    7. Nadine McCloud & Yongmiao Hong, 2011. "Testing The Structure Of Conditional Correlations In Multivariate Garch Models: A Generalized Cross‐Spectrum Approach," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(4), pages 991-1037, November.
    8. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    9. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    10. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Charles, Amélie & Darné, Olivier, 2017. "Forecasting crude-oil market volatility: Further evidence with jumps," Energy Economics, Elsevier, vol. 67(C), pages 508-519.
    12. M. Fatih Oztek & Nadir Ocal, 2012. "Integration of China Stock Markets with International Stock Markets: An application of Smooth Transition Conditional Correlation with Double Transition Functions," ERC Working Papers 1209, ERC - Economic Research Center, Middle East Technical University, revised Dec 2012.
    13. Chuffart Thomas & Flachaire Emmanuel & Péguin-Feissolle Anne, 2018. "Testing for misspecification in the short-run component of GARCH-type models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(5), pages 1-17, December.
    14. Annastiina Silvennoinen & Timo Teräsvirta, 2009. "Modeling Multivariate Autoregressive Conditional Heteroskedasticity with the Double Smooth Transition Conditional Correlation GARCH Model," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(4), pages 373-411, Fall.
    15. Avdulaj, Krenar & Barunik, Jozef, 2015. "Are benefits from oil–stocks diversification gone? New evidence from a dynamic copula and high frequency data," Energy Economics, Elsevier, vol. 51(C), pages 31-44.
    16. Astrid Ayala & Szabolcs Blazsek, 2018. "Equity market neutral hedge funds and the stock market: an application of score-driven copula models," Applied Economics, Taylor & Francis Journals, vol. 50(37), pages 4005-4023, August.
    17. Harvey, Andrew & Thiele, Stephen, 2016. "Testing against changing correlation," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 575-589.
    18. Wasel Shadat & Chris Orme, 2011. "An investigation of parametric tests of CCC assumption," Economics Discussion Paper Series 1109, Economics, The University of Manchester.
    19. Tarciso Gouveia da Silva & Osmani Teixeira de Carvalho Guillén & George Augusto Noronha Morcerf & Andre de Melo Modenesi, 2020. "Effects of Monetary Policy News on Financial Assets: evidence from Brazil on a bivariate VAR-GARCH model (2006-17)," Working Papers Series 536, Central Bank of Brazil, Research Department.
    20. De Santis, Roberto A. & Stein, Michael, 2015. "Financial indicators signaling correlation changes in sovereign bond markets," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 86-102.

    More about this item

    Keywords

    Multivariate GARCH; Neural Network; Taylor Expansion;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adr:anecst:y:2016:i:123-124:p:77-101. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/ensaefr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General or Laurent Linnemer (email available below). General contact details of provider: https://edirc.repec.org/data/ensaefr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.