IDEAS home Printed from https://ideas.repec.org/a/adm/journl/v7y2018i5p39-43.html
   My bibliography  Save this article

The Effect of Rotenone on Ndfip1 in MES23.5 Cells

Author

Listed:
  • Xin Liu

Abstract

Parkinson's disease (PD) is a common degenerative disease of the nervous system. The pathogenesis of PD is not yet clear. However, it has been reported that many factors including age, environmental factors, and genetic factors are included. Rotenone is one of the naturally occurring insecticides found in many plants of the Derris, Lonchocarpus, Tephrosia and Mundulea species. It is also one of the classic neurotoxic drugs to produce PD models. Ndfip1 has been reported to be a neuroprotective protein in the brain. Therefore, in this study, we examined the expression of Ndfip1 in the mitochondrial complex I inhibitor rotenone-induced PD models in MES23.5 dopaminergic cells. Our results showed that rotenone has a concentration-dependent and time-dependent impairment effect on MES23.5 cells. When the concentration of rotenone was 25 nmol/L, the viability of the cells was significantly decreased at 24 hrs. Further study showed that the expression of Ndfip1 increased in the mRNA levels at 6 hrs after 25 nmol/L rotenone treatment. The protein levels of Ndfip1 increased at 3 hrs, 6 hrs and decreased at 12 hrs after 100 nmol/L rotenone treatment. This indicates that rotenone caused damage to MES23.5 dopaminergic cells, which is accompanied by a decrease of Ndfip1.

Suggested Citation

  • Xin Liu, 2018. "The Effect of Rotenone on Ndfip1 in MES23.5 Cells," International Journal of Sciences, Office ijSciences, vol. 7(05), pages 39-43, May.
  • Handle: RePEc:adm:journl:v:7:y:2018:i:5:p:39-43
    DOI: 10.18483/ijSci.1659
    as

    Download full text from publisher

    File URL: https://www.ijsciences.com/pub/article/1659
    Download Restriction: no

    File URL: https://www.ijsciences.com/pub/pdf/V72018051659.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.18483/ijSci.1659?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael T. Lin & M. Flint Beal, 2006. "Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases," Nature, Nature, vol. 443(7113), pages 787-795, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng-Jie Zhou & Xing-Yue Wang & Yan-Hua Dong & Dong-Hui Wang & Zhe Han & Xiao-Jie Zhang & Qing-Yuan Sun & John Carroll & Cheng-Guang Liang, 2022. "CENP-F-dependent DRP1 function regulates APC/C activity during oocyte meiosis I," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Cesare Granata & Nikeisha J. Caruana & Javier Botella & Nicholas A. Jamnick & Kevin Huynh & Jujiao Kuang & Hans A. Janssen & Boris Reljic & Natalie A. Mellett & Adrienne Laskowski & Tegan L. Stait & A, 2021. "High-intensity training induces non-stoichiometric changes in the mitochondrial proteome of human skeletal muscle without reorganisation of respiratory chain content," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    3. Ami Kobayashi & Kotaro Azuma & Toshihiko Takeiwa & Toshimori Kitami & Kuniko Horie & Kazuhiro Ikeda & Satoshi Inoue, 2023. "A FRET-based respirasome assembly screen identifies spleen tyrosine kinase as a target to improve muscle mitochondrial respiration and exercise performance in mice," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Jinjian Huang & Rong Yang & Jiao Jiao & Ze Li & Penghui Wang & Ye Liu & Sicheng Li & Canwen Chen & Zongan Li & Guiwen Qu & Kang Chen & Xiuwen Wu & Bo Chi & Jianan Ren, 2023. "A click chemistry-mediated all-peptide cell printing hydrogel platform for diabetic wound healing," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    5. Matthias Kettwig & Katharina Ternka & Kristin Wendland & Dennis Manfred Krüger & Silvia Zampar & Charlotte Schob & Jonas Franz & Abhishek Aich & Anne Winkler & M. Sadman Sakib & Lalit Kaurani & Robert, 2021. "Interferon-driven brain phenotype in a mouse model of RNaseT2 deficient leukoencephalopathy," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    6. Ting Huang & Ruyi Lin & Yuanqin Su & Hao Sun & Xixi Zheng & Jinsong Zhang & Xiaoyan Lu & Baiqin Zhao & Xinchi Jiang & Lingling Huang & Ni Li & Jing Shi & Xiaohui Fan & Donghang Xu & Tianyuan Zhang & J, 2023. "Efficient intervention for pulmonary fibrosis via mitochondrial transfer promoted by mitochondrial biogenesis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Minfeng Huo & Zhimin Tang & Liying Wang & Linlin Zhang & Haiyan Guo & Yu Chen & Ping Gu & Jianlin Shi, 2022. "Magnesium hexacyanoferrate nanocatalysts attenuate chemodrug-induced cardiotoxicity through an anti-apoptosis mechanism driven by modulation of ferrous iron," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    8. Su-Youn Cho & Hee-Tae Roh, 2022. "Effects of Exercise Training on Neurotrophic Factors and Blood–Brain Barrier Permeability in Young-Old and Old-Old Women," IJERPH, MDPI, vol. 19(24), pages 1-10, December.
    9. Ying Shao & Zhongli Chen & Lingling Wu, 2019. "Oxidative Stress Effects of Soluble Sulfide on Human Hepatocyte Cell Line LO2," IJERPH, MDPI, vol. 16(9), pages 1-11, May.
    10. Pankaj C. Patel & Marcus T. Wolfe, 2021. "Under Pressure: The Effect of Antioxidants on Health Consequences Related to Oxidative Stress," Entrepreneurship Theory and Practice, , vol. 45(1), pages 211-241, January.
    11. Mohsen S. Al-Omar & Mamuna Naz & Salman A. A. Mohammed & Momina Mansha & Mohd N. Ansari & Najeeb U. Rehman & Mehnaz Kamal & Hamdoon A. Mohammed & Mohammad Yusuf & Abubaker M. Hamad & Naseem Akhtar & R, 2020. "Pyrethroid-Induced Organ Toxicity and Anti-Oxidant-Supplemented Amelioration of Toxicity and Organ Damage: The Protective Roles of Ascorbic Acid and α-Tocopherol," IJERPH, MDPI, vol. 17(17), pages 1-28, August.

    More about this item

    Keywords

    Parkinson’ Disease; MES23.5 Cells; Rotenone; Ndfip1;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adm:journl:v:7:y:2018:i:5:p:39-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Staff ijSciences (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.