IDEAS home Printed from https://ideas.repec.org/a/adg/ibijbr/v5y2025i1p43-45.html
   My bibliography  Save this article

Myosatellite Cells: The Architects of Muscle Regeneration and Repair

Author

Listed:
  • Mayalata Dimpal

    (Department of Zoology, N. B. Mehta Science College, Bordi, Palghar-401701, India)

Abstract

Myosatellite cells, also referred to as satellite cells, are muscle-specific stem cells that play a crucial role in skeletal muscle regeneration, growth, and repair. These cells sit nestled between the basal lamina and sarcolemma of muscle fibers, and upon activation, they proliferate and differentiate into new myofibers. This monograph gives an overview of the biology, function, and therapeutic potential of myosatellite cells, with integration of recent scientific advances. Their effects in muscle homeostasis, the molecular mechanisms regulating their activation, and the regenerative medicine potential are discussed. Future directions for research and clinical applications conclude the review.

Suggested Citation

  • Mayalata Dimpal, 2025. "Myosatellite Cells: The Architects of Muscle Regeneration and Repair," Inventum Biologicum: An International Journal of Biological Research, World BIOLOGICA, vol. 5(1), pages 43-45.
  • Handle: RePEc:adg:ibijbr:v:5:y:2025:i:1:p:43-45
    as

    Download full text from publisher

    File URL: https://journals.worldbiologica.com/ib/article/view/170
    Download Restriction: no

    File URL: https://journals.worldbiologica.com/ib/article/view/170/346
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joseph T. Rodgers & Katherine Y. King & Jamie O. Brett & Melinda J. Cromie & Gregory W. Charville & Katie K. Maguire & Christopher Brunson & Namrata Mastey & Ling Liu & Chang-Ru Tsai & Margaret A. Goo, 2014. "mTORC1 controls the adaptive transition of quiescent stem cells from G0 to GAlert," Nature, Nature, vol. 510(7505), pages 393-396, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Le Tran Phuc Khoa & Wentao Yang & Mengrou Shan & Li Zhang & Fengbiao Mao & Bo Zhou & Qiang Li & Rebecca Malcore & Clair Harris & Lili Zhao & Rajesh C. Rao & Shigeki Iwase & Sundeep Kalantry & Stephani, 2024. "Quiescence enables unrestricted cell fate in naive embryonic stem cells," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Chee Ho H’ng & Shanika L. Amarasinghe & Boya Zhang & Hojin Chang & Xinli Qu & David R. Powell & Alberto Rosello-Diez, 2024. "Compensatory growth and recovery of cartilage cytoarchitecture after transient cell death in fetal mouse limbs," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Chao-Hui Chang & Feng Liu & Stefania Militi & Svenja Hester & Reshma Nibhani & Siwei Deng & James Dunford & Aniko Rendek & Zahir Soonawalla & Roman Fischer & Udo Oppermann & Siim Pauklin, 2024. "The pRb/RBL2-E2F1/4-GCN5 axis regulates cancer stem cell formation and G0 phase entry/exit by paracrine mechanisms," Nature Communications, Nature, vol. 15(1), pages 1-29, December.
    4. Jacob C Kimmel & Amy Y Chang & Andrew S Brack & Wallace F Marshall, 2018. "Inferring cell state by quantitative motility analysis reveals a dynamic state system and broken detailed balance," PLOS Computational Biology, Public Library of Science, vol. 14(1), pages 1-29, January.
    5. Xiaoyan Wei & Angelos Rigopoulos & Matthias Lienhard & Sophie Pöhle-Kronawitter & Georgios Kotsaris & Julia Franke & Nikolaus Berndt & Joy Orezimena Mejedo & Hao Wu & Stefan Börno & Bernd Timmermann &, 2024. "Neurofibromin 1 controls metabolic balance and Notch-dependent quiescence of murine juvenile myogenic progenitors," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    6. Jiayin Peng & Lili Han & Biao Liu & Jiawen Song & Yuang Wang & Kunpeng Wang & Qian Guo & XinYan Liu & Yu Li & Jujin Zhang & Wenqing Wu & Sheng Li & Xin Fu & Cheng-le Zhuang & Weikang Zhang & Shengbao , 2023. "Gli1 marks a sentinel muscle stem cell population for muscle regeneration," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Hue M. La & Jinyue Liao & Julien M. D. Legrand & Fernando J. Rossello & Ai-Leen Chan & Vijesh Vaghjiani & Jason E. Cain & Antonella Papa & Tin Lap Lee & Robin M. Hobbs, 2022. "Distinctive molecular features of regenerative stem cells in the damaged male germline," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    8. Xuan-Zhang Huang & Min-Jiao Pang & Jia-Yi Li & Han-Yu Chen & Jing-Xu Sun & Yong-Xi Song & Hong-Jie Ni & Shi-Yu Ye & Shi Bai & Teng-Hui Li & Xin-Yu Wang & Jing-Yuan Lu & Jin-Jia Yang & Xun Sun & Jason , 2023. "Single-cell sequencing of ascites fluid illustrates heterogeneity and therapy-induced evolution during gastric cancer peritoneal metastasis," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    9. Suyang Zhang & Feng Yang & Yile Huang & Liangqiang He & Yuying Li & Yi Ching Esther Wan & Yingzhe Ding & Kui Ming Chan & Ting Xie & Hao Sun & Huating Wang, 2023. "ATF3 induction prevents precocious activation of skeletal muscle stem cell by regulating H2B expression," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    10. Caroline E. Brun & Marie-Claude Sincennes & Alexander Y. T. Lin & Derek Hall & William Jarassier & Peter Feige & Fabien Le Grand & Michael A. Rudnicki, 2022. "GLI3 regulates muscle stem cell entry into GAlert and self-renewal," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Hongna Zuo & Aiwei Wu & Mingwei Wang & Liquan Hong & Hu Wang, 2024. "tRNA m1A modification regulate HSC maintenance and self-renewal via mTORC1 signaling," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adg:ibijbr:v:5:y:2025:i:1:p:43-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: World BIOLOGICA (email available below). General contact details of provider: https://journals.worldbiologica.com/ib .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.