Author
Abstract
The application of AI and machine learning, particularly the vision transformer method, in bacterial detection presents a promising solution to overcome limitations of traditional methods, offering faster and more accurate detection of disease-causing bacteria like E. coli and salmonella in water, crucial for human survival, with ongoing research to further assess its effectiveness in microbiology. This research introduces a revolutionary positional self-attention transformer model for the classification of bacterial colonies. Leveraging the proven success of transformer architectures in various domains, we enhancedthe model's performance by integrating a positional self-attention mechanism. We presented a novel approach for bacterial colony classification utilizing a positional self-attention transformer model. This allows the model to effectively capture spatial relationships and patterns within bacterial colonies, contributing to highly accurate classification results. We trained the model on a substantial dataset of bacterial images, whichensures its robustness and generalization to diverse colony types. The proposed model adeptly captured the spatial relationships and sequential patterns inherent in bacterial colony images, allowing for more accurate and robust classification. The proposed model demonstrated remarkable performance, achieving an accuracy of 98.50% in the classification of bacterial colonies. This novel approach surpasses traditional methods by effectively capturing intricate spatial relationships within microbial structures, offering unprecedented accuracy in discerning subtle morphological variations. The model's adaptability to diverse colony shapes and arrangements marks a significant advancement, promising to redefine the landscape of bacterial colony classification through the lens of state-of-the-art deep learning techniques. The high classification accuracy attained by the model,suggests its potential for practical applications in the early diagnosis of infectious diseases and the development of targeted treatments. The findings of this study underscore the effectiveness of incorporating positional self-attention in transformer models for image-based classification tasks, particularly in the domain of bacterial colony analysis.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:abq:ijist1:v:6:y:2024:i:1:p:237-248. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Iqra Nazeer (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.