IDEAS home Printed from https://ideas.repec.org/a/abq/ijist1/v6y2024i1p132-142.html
   My bibliography  Save this article

AI-Based Predictive Tool-Life Computation in Manufacturing Industry

Author

Listed:
  • Muhib Aleem

    (Mehran University of Engineering & Technology)

Abstract

For maximum productivity and optimal utilization of tools, predictive maintenance serves as a standard operation procedure in the manufacturing industry. However, unnecessary or delayed maintenance both causesincreased downtime and loss of revenue which should be optimized. Accordingly, this paper presents a method for predicting the maintenance requirement to ensure the optimal utilization of the tools. The experimental data for this research has been collected from a CNC lathe machine in a manufacturing plant for multiple days. The CNC machine equipped with three sensors leadsto a detailed log for parameters related to toolwear including current, voltage, acceleration in 3D, motor rpm,and tool temperature respectively. Detailed experimentation has been performed to investigate the importance of different parameters. Adirect relationship betweencurrent and tooltemperature was observedleading to an immediate halt of machine operations. In the subsequent step, maintenance prediction was performed using Logistic regression and Random Forest technique respectively to validate the machine behavior. The retrospective data validated the performance with precise accuracy equal to 98% and 95% for both of methods respectively. The promising results predicting the maintenance schedule of the Lathe machine signifythe effectiveness of Machine Learning towards advance scheduling for maintenance. The proactive maintenance strategyhelps in potential benefits such as avoiding further costs, avoidance of disruptions,and increased efficiency productivity, thereby enhancing tool life cycles.

Suggested Citation

  • Muhib Aleem, 2024. "AI-Based Predictive Tool-Life Computation in Manufacturing Industry," International Journal of Innovations in Science & Technology, 50sea, vol. 6(1), pages 132-142, February.
  • Handle: RePEc:abq:ijist1:v:6:y:2024:i:1:p:132-142
    as

    Download full text from publisher

    File URL: https://journal.50sea.com/index.php/IJIST/article/view/686/1279
    Download Restriction: no

    File URL: https://journal.50sea.com/index.php/IJIST/article/view/686
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nguyen, Kim-Anh & Do, Phuc & Grall, Antoine, 2015. "Multi-level predictive maintenance for multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 83-94.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Urbani, Michele & Brunelli, Matteo & Punkka, Antti, 2023. "An approach for bi-objective maintenance scheduling on a networked system with limited resources," European Journal of Operational Research, Elsevier, vol. 305(1), pages 101-113.
    2. Özgür-Ünlüakın, Demet & Türkali, Busenur, 2021. "Evaluation of proactive maintenance policies on a stochastically dependent hidden multi-component system using DBNs," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    3. Oh, So Young & Joung, Chanwoo & Lee, Seonghwan & Shim, Yoon-Bo & Lee, Dahun & Cho, Gyu-Eun & Jang, Juhyeong & Lee, In Yong & Park, Young-Bin, 2024. "Condition-based maintenance of wind turbine structures: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    4. Do, Phuc & Assaf, Roy & Scarf, Phil & Iung, Benoit, 2019. "Modelling and application of condition-based maintenance for a two-component system with stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 86-97.
    5. Ke, Hua & Yao, Kai, 2016. "Block replacement policy with uncertain lifetimes," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 119-124.
    6. Lu, Biao & Zhou, Xiaojun, 2017. "Opportunistic preventive maintenance scheduling for serial-parallel multistage manufacturing systems with multiple streams of deterioration," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 116-127.
    7. He, Zhichao & Wang, Yanhui & Sun, Wanhua & Hao, Yucheng & Xia, Weifu, 2025. "A proactive opportunistic maintenance decision model based on reliability in train systems," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    8. Arnaldo Rabello de Aguiar Vallim Filho & Daniel Farina Moraes & Marco Vinicius Bhering de Aguiar Vallim & Leilton Santos da Silva & Leandro Augusto da Silva, 2022. "A Machine Learning Modeling Framework for Predictive Maintenance Based on Equipment Load Cycle: An Application in a Real World Case," Energies, MDPI, vol. 15(10), pages 1-41, May.
    9. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    10. Dui, Hongyan & Tian, Tianzi & Wu, Shaomin & Xie, Min, 2023. "A cost-informed component maintenance index and its applications," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    11. Niu, Gang & Jiang, Junjie, 2017. "Prognostic control-enhanced maintenance optimization for multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 218-226.
    12. Liu, Gehui & Chen, Shaokuan & Ho, Tinkin & Ran, Xinchen & Mao, Baohua & Lan, Zhen, 2022. "Optimum opportunistic maintenance schedule over variable horizons considering multi-stage degradation and dynamic strategy," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    13. Nguyen, Kim-Anh & Do, Phuc & Grall, Antoine, 2017. "Joint predictive maintenance and inventory strategy for multi-component systems using Birnbaum’s structural importance," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 249-261.
    14. Wu, Tianyi & Yang, Li & Ma, Xiaobing & Zhang, Zihan & Zhao, Yu, 2020. "Dynamic maintenance strategy with iteratively updated group information," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    15. Wang, Yifei & He, Rui & Tian, Zhigang, 2023. "Opportunistic condition-based maintenance optimization for electrical distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    16. Zhang, Yamei & Zhao, Songzheng & Wu, Bei, 2025. "Reliability and maintenance analysis of two-component system subject to zoned shocks and degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    17. Leppinen, Jussi & Punkka, Antti & Ekholm, Tommi & Salo, Ahti, 2025. "An optimization model for determining cost-efficient maintenance policies for multi-component systems with economic and structural dependencies," Omega, Elsevier, vol. 130(C).
    18. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    19. Pedersen, Tom Ivar & Vatn, Jørn, 2022. "Optimizing a condition-based maintenance policy by taking the preferences of a risk-averse decision maker into account," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    20. Somayyeh Shahraki Dehsoukhteh & Mostafa Razmkhah & Bruno Castanier, 2024. "Optimal block replacement based on expert judgement method," Journal of Risk and Reliability, , vol. 238(3), pages 591-603, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:abq:ijist1:v:6:y:2024:i:1:p:132-142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Iqra Nazeer (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.