IDEAS home Printed from https://ideas.repec.org/a/abq/ijist1/v5y2023i4p847-861.html
   My bibliography  Save this article

Lossy Image Compression Unveiled: A Comprehensive Evaluation of DCT, Wavelet Transform, and Vector Quantization

Author

Listed:
  • Umer Ijaz

    (Department of Electrical Engineering & Technology, Government College University, Faisalabad, Pakistan)

Abstract

The increasing demand for efficient image storage and transmission has driven extensive research into lossy image compression algorithms. This paper presents a comprehensive comparative analysis of three prominent lossy image compression techniques: Discrete Cosine Transform (DCT), Wavelet Transform, and Vector Quantization (VQ). Employing a diverse dataset and assessing their performance through key metrics, including Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Mean Squared Error (MSE), Bitrate, and Computational Complexity, we meticulously evaluated these techniques across dimensions of image quality, compression efficiency, and computational demands.DCT emerges as a standout performer in preserving image quality, closely followed by Wavelet Transform. While Vector Quantization demonstrates efficiency in compression, its limitations become apparent in the realm of image quality preservation. The comparative analysis unequivocally positions DCT as the optimal choice for applications prioritizing image quality. This preference is substantiated by its remarkable PSNR and SSIM scores. Despite DCT not being the most computationally efficient, its ability to strike a crucial balance between compression efficiency and image quality renders it a well-rounded and effective solution.In conclusion, this research provides valuable insights into the comparative performance of DCT, Wavelet Transform, and VQ in the context of lossy image compression. The findings underscore DCT's superiority in image quality preservation, offering practical guidance for decision-makers in the field. The paper contributes to informed choices based on specific application requirements and emphasizes the pivotal role of DCT as a well-rounded and effective solution.

Suggested Citation

  • Umer Ijaz, 2023. "Lossy Image Compression Unveiled: A Comprehensive Evaluation of DCT, Wavelet Transform, and Vector Quantization," International Journal of Innovations in Science & Technology, 50sea, vol. 5(4), pages 847-861, December.
  • Handle: RePEc:abq:ijist1:v:5:y:2023:i:4:p:847-861
    as

    Download full text from publisher

    File URL: https://journal.50sea.com/index.php/IJIST/article/view/600/1189
    Download Restriction: no

    File URL: https://journal.50sea.com/index.php/IJIST/article/view/600
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:abq:ijist1:v:5:y:2023:i:4:p:847-861. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Iqra Nazeer (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.