IDEAS home Printed from https://ideas.repec.org/a/abq/ijist1/v5y2023i4p424-439.html
   My bibliography  Save this article

Addressing Illicit Tobacco Growth in Pakistan: Leveraging AI and Satellite Technology for Precise Monitoring and Effective Solutions

Author

Listed:
  • Waleed Khan

    (Department of Computer Science & Information Technology, University of Engineering and Technology, Peshawar, Pakistan)

Abstract

The market share of illicit tobacco products in Pakistan has seen a significant surge in recent years. In 2022, it reached a staggering 42.5%. Since January 2023, there has been a sharp 32.5% increase in volumes of Duty Not Paid(DNP) products and a remarkable 67% surge in the quantities of smuggled cigarettes. This rise can be attributed to the unregistered and unlicensed tobacco cultivation in Pakistan. This sector has largely relied on conventional methods for data collection in the field, primarily managed by the country's crop statistical departments. The utilization of cutting-edge artificial intelligence techniques and satellite imagery for generating crop statistics has the potential to address this issue effectively. We established a synergy by combining images from two remote sensing satellites and collected field data to detect tobacco crops using Recurrent Neural Networks (RNN). The results affirm the effectiveness of these techniques in detecting and estimating the acreage of tobacco crops in the observed areas, particularly in a union council of the Swabi region. We conducted surveys to collect training and validation data through our proprietary smartphone application, GeoSurvey. The collected data was subsequently refined, preprocessed, and organized to prepare it for use with our deep learning algorithm. The model we developed for the detection and acreage estimation of tobacco crops is called Convolutional Long Short-Term Memory (ConvLSTM). We created two datasets from the acquired satellite images for comparison. Our experimentation results demonstrated that the use of ConvLSTM for the synergy of Sentinel-2 and Planet-Scope imagery yields higher training and validation accuracy, reaching 98.09% and 96.22%, respectively. In comparison, the use of time series Sentinel-2 images alone achieved training and testing accuracy of 97.78% and 95.56%.

Suggested Citation

  • Waleed Khan, 2023. "Addressing Illicit Tobacco Growth in Pakistan: Leveraging AI and Satellite Technology for Precise Monitoring and Effective Solutions," International Journal of Innovations in Science & Technology, 50sea, vol. 5(4), pages 424-439, October.
  • Handle: RePEc:abq:ijist1:v:5:y:2023:i:4:p:424-439
    as

    Download full text from publisher

    File URL: https://journal.50sea.com/index.php/IJIST/article/view/549/1074
    Download Restriction: no

    File URL: https://journal.50sea.com/index.php/IJIST/article/view/549
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:abq:ijist1:v:5:y:2023:i:4:p:424-439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Iqra Nazeer (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.