Author
Listed:
- Bakhtawer, Bushra Naz, Sanam Narejo, Naseer U Din, Waqar Ahmed
(Department of Computer System Engineering, Mehran University of Engineering & Technology, Pakistan. Department of Computer & Information engineering, NED University of Engineering & Technology, Karachi, Pakistan)
Abstract
Crop Management System (CMS) was developed in an Ionic framework with a Real-Time Firebase database for loop backing and decision support. The main two features were; Soil classification where the soil was classified based on temperature, humidity, and soil properties such as soil moisture, soil nutrients, and soil PH level using Random Forest Algorithm. By Bootstrap method using Random Forest, samples from the dataset were selected & then classification trees was generated. The other feature was crop precision where the condition of the crop was and examined using temperature, humidity, soil moisture, soil PH levels, and soil nutrients (N, P, K). IoT device was used to fetch data from the field and then compare with already stored ideal values, suitable for optimal yield, in CMS database then process using the application to suggest the crop for cultivation and to optimize the usage of water and fertilizers. Currently, we classify the soil using Random Forest Algorithm & suggest the suitable crop for the classified type of soil & also measure the soil moisture and soil nutrients of agricultural field Acre based on the reading results we are suggesting the crop to is cultivated and pre-requisite which would be needed in future. The proposed method gives an accuracy of 96.5% as compared to existing methods of Artificial Neural Networks and Support Vector Machines.
Suggested Citation
Bakhtawer, Bushra Naz, Sanam Narejo, Naseer U Din, Waqar Ahmed, 2022.
"Soil Classification & Prediction of Crop Status with Supervised Learning Algorithm: Random Forest,"
International Journal of Innovations in Science & Technology, 50sea, vol. 4(4), pages 1011-1022, October.
Handle:
RePEc:abq:ijist1:v:4:y:2022:i:4:p:1011-1022
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:abq:ijist1:v:4:y:2022:i:4:p:1011-1022. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Iqra Nazeer (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.