IDEAS home Printed from https://ideas.repec.org/r/pal/jorsoc/v55y2004i12d10.1057_palgrave.jors.2601784.html
   My bibliography  Save this item

A review and classification of heuristics for permutation flow-shop scheduling with makespan objective

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Viswanath Nagarajan & Maxim Sviridenko, 2009. "Tight Bounds for Permutation Flow Shop Scheduling," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 417-427, May.
  2. B-J Joo & Y-D Kim, 2009. "A branch-and-bound algorithm for a two-machine flowshop scheduling problem with limited waiting time constraints," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(4), pages 572-582, April.
  3. Bagchi, Tapan P. & Gupta, Jatinder N.D. & Sriskandarajah, Chelliah, 2006. "A review of TSP based approaches for flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 169(3), pages 816-854, March.
  4. Olivier Ploton & Vincent T’kindt, 2023. "Moderate worst-case complexity bounds for the permutation flowshop scheduling problem using Inclusion–Exclusion," Journal of Scheduling, Springer, vol. 26(2), pages 137-145, April.
  5. Kalczynski, Pawel J. & Kamburowski, Jerzy, 2009. "An empirical analysis of the optimality rate of flow shop heuristics," European Journal of Operational Research, Elsevier, vol. 198(1), pages 93-101, October.
  6. Hatami, Sara & Ruiz, Rubén & Andrés-Romano, Carlos, 2015. "Heuristics and metaheuristics for the distributed assembly permutation flowshop scheduling problem with sequence dependent setup times," International Journal of Production Economics, Elsevier, vol. 169(C), pages 76-88.
  7. J N D Gupta & J E Schaller, 2006. "Minimizing flow time in a flow-line manufacturing cell with family setup times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(2), pages 163-176, February.
  8. K Katsaliaki & N Mustafee & Y K Dwivedi & T Williams & J M Wilson, 2010. "A profile of OR research and practice published in the Journal of the Operational Research Society," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 82-94, January.
  9. Yenisey, Mehmet Mutlu & Yagmahan, Betul, 2014. "Multi-objective permutation flow shop scheduling problem: Literature review, classification and current trends," Omega, Elsevier, vol. 45(C), pages 119-135.
  10. Maria Raquel C. Costa & Jorge M. S. Valente & Jeffrey E. Schaller, 2020. "Efficient procedures for the weighted squared tardiness permutation flowshop scheduling problem," Flexible Services and Manufacturing Journal, Springer, vol. 32(3), pages 487-522, September.
  11. Baker, Kenneth R. & Altheimer, Dominik, 2012. "Heuristic solution methods for the stochastic flow shop problem," European Journal of Operational Research, Elsevier, vol. 216(1), pages 172-177.
  12. Li, Wei & Nault, Barrie R. & Ye, Honghan, 2019. "Trade-off balancing in scheduling for flow shop production and perioperative processes," European Journal of Operational Research, Elsevier, vol. 273(3), pages 817-830.
  13. Vallada, Eva & Ruiz, Rubén, 2010. "Genetic algorithms with path relinking for the minimum tardiness permutation flowshop problem," Omega, Elsevier, vol. 38(1-2), pages 57-67, February.
  14. Gupta, Jatinder N.D. & Stafford, Edward Jr., 2006. "Flowshop scheduling research after five decades," European Journal of Operational Research, Elsevier, vol. 169(3), pages 699-711, March.
  15. Pessoa, Luciana S. & Andrade, Carlos E., 2018. "Heuristics for a flowshop scheduling problem with stepwise job objective function," European Journal of Operational Research, Elsevier, vol. 266(3), pages 950-962.
  16. Barry B. & Quim Castellà & Angel A. & Helena Ramalhinho Lourenco & Manuel Mateo, 2012. "ILS-ESP: An Efficient, Simple, and Parameter-Free Algorithm for Solving the Permutation Flow-Shop Problem," Working Papers 636, Barcelona School of Economics.
  17. Framinan, Jose M. & Perez-Gonzalez, Paz, 2015. "On heuristic solutions for the stochastic flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 246(2), pages 413-420.
  18. Anna Ławrynowicz, 2006. "Hybrid approach with an expert system and a genetic algorithm to production management in the supply net," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 14(1‐2), pages 59-76, January.
  19. Gupta, Jatinder N.D. & Koulamas, Christos & Kyparisis, George J., 2006. "Performance guarantees for flowshop heuristics to minimize makespan," European Journal of Operational Research, Elsevier, vol. 169(3), pages 865-872, March.
  20. Kalczynski, Pawel Jan & Kamburowski, Jerzy, 2007. "On the NEH heuristic for minimizing the makespan in permutation flow shops," Omega, Elsevier, vol. 35(1), pages 53-60, February.
  21. Naderi, Bahman & Ruiz, Rubén, 2014. "A scatter search algorithm for the distributed permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 239(2), pages 323-334.
  22. Fernandez-Viagas, Victor & Molina-Pariente, Jose M. & Framinan, Jose M., 2020. "Generalised accelerations for insertion-based heuristics in permutation flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 282(3), pages 858-872.
  23. Pan, Quan-Ke & Wang, Ling, 2012. "Effective heuristics for the blocking flowshop scheduling problem with makespan minimization," Omega, Elsevier, vol. 40(2), pages 218-229, April.
  24. Juliana Castaneda & Xabier A. Martin & Majsa Ammouriova & Javier Panadero & Angel A. Juan, 2022. "A Fuzzy Simheuristic for the Permutation Flow Shop Problem under Stochastic and Fuzzy Uncertainty," Mathematics, MDPI, vol. 10(10), pages 1-17, May.
  25. Lei Shang & Christophe Lenté & Mathieu Liedloff & Vincent T’Kindt, 2018. "Exact exponential algorithms for 3-machine flowshop scheduling problems," Journal of Scheduling, Springer, vol. 21(2), pages 227-233, April.
  26. Chen, Shih-Hsin & Chen, Min-Chih, 2013. "Addressing the advantages of using ensemble probabilistic models in Estimation of Distribution Algorithms for scheduling problems," International Journal of Production Economics, Elsevier, vol. 141(1), pages 24-33.
  27. S.S. Panwalkar & Milton L. Smith & Christos Koulamas, 2013. "Review of the ordered and proportionate flow shop scheduling research," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(1), pages 46-55, February.
  28. Angel A. Juan & Helena Ramalhinho-Lourenço & Manuel Mateo & Quim Castellà & Barry B. Barrios, 2012. "ILS-ESP: An efficient, simple, and parameter-free algorithm for solving the permutation flow-shop problem," Economics Working Papers 1319, Department of Economics and Business, Universitat Pompeu Fabra.
  29. Pan, Quan-Ke & Ruiz, Rubén, 2014. "An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem," Omega, Elsevier, vol. 44(C), pages 41-50.
  30. Gerardo Minella & Rubén Ruiz & Michele Ciavotta, 2008. "A Review and Evaluation of Multiobjective Algorithms for the Flowshop Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 451-471, August.
  31. S Yanai & T Fujie, 2006. "A three-machine permutation flow-shop problem with minimum makespan on the second machine," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(4), pages 460-468, April.
  32. K Sheibani, 2010. "A fuzzy greedy heuristic for permutation flow-shop scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(5), pages 813-818, May.
  33. Liu, Weibo & Jin, Yan & Price, Mark, 2017. "A new improved NEH heuristic for permutation flowshop scheduling problems," International Journal of Production Economics, Elsevier, vol. 193(C), pages 21-30.
  34. Vallada, Eva & Ruiz, Rubén & Framinan, Jose M., 2015. "New hard benchmark for flowshop scheduling problems minimising makespan," European Journal of Operational Research, Elsevier, vol. 240(3), pages 666-677.
  35. Rad, Shahriar Farahmand & Ruiz, Rubén & Boroojerdian, Naser, 2009. "New high performing heuristics for minimizing makespan in permutation flowshops," Omega, Elsevier, vol. 37(2), pages 331-345, April.
  36. Perez-Gonzalez, Paz & Framinan, Jose M., 2024. "A review and classification on distributed permutation flowshop scheduling problems," European Journal of Operational Research, Elsevier, vol. 312(1), pages 1-21.
  37. Gmys, Jan & Mezmaz, Mohand & Melab, Nouredine & Tuyttens, Daniel, 2020. "A computationally efficient Branch-and-Bound algorithm for the permutation flow-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 284(3), pages 814-833.
  38. Fernandez-Viagas, Victor & Ruiz, Rubén & Framinan, Jose M., 2017. "A new vision of approximate methods for the permutation flowshop to minimise makespan: State-of-the-art and computational evaluation," European Journal of Operational Research, Elsevier, vol. 257(3), pages 707-721.
  39. Fernando Luis Rossi & Marcelo Seido Nagano, 2022. "Beam search-based heuristics for the mixed no-idle flowshop with total flowtime criterion," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1311-1346, December.
  40. Pei-Chann Chang & Shih-Hsin Chen & Chin-Yuan Fan & V. Mani, 2010. "Generating artificial chromosomes with probability control in genetic algorithm for machine scheduling problems," Annals of Operations Research, Springer, vol. 180(1), pages 197-211, November.
  41. Ruiz, Rubén & Pan, Quan-Ke & Naderi, Bahman, 2019. "Iterated Greedy methods for the distributed permutation flowshop scheduling problem," Omega, Elsevier, vol. 83(C), pages 213-222.
  42. J A Vázquez-Rodríguez & G Ochoa, 2011. "On the automatic discovery of variants of the NEH procedure for flow shop scheduling using genetic programming," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 381-396, February.
  43. A Ławrynowicz, 2008. "Integration of production planning and scheduling using an expert system and a genetic algorithm," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(4), pages 455-463, April.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.