IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v44y2022i4d10.1007_s00291-022-00678-9.html
   My bibliography  Save this article

Beam search-based heuristics for the mixed no-idle flowshop with total flowtime criterion

Author

Listed:
  • Fernando Luis Rossi

    (Federal Institute of São Paulo, Management Department)

  • Marcelo Seido Nagano

    (University of São Paulo, Trabalhador São-carlence avenue, 400)

Abstract

This paper addresses the mixed no-idle flowshop scheduling problem with flowtime minimization. In a mixed no-idle environment, machines are set in series and some machines do not allow idleness and require continuous processing. We approached a variant of this problem that analyses the total flowtime minimization criterion. As this is a new problem, novel high-performance heuristics and metaheuristics were presented. In order to assess the proposed algorithms, we evaluated well-known heuristics and metaheuristics from similar scheduling problems. Furthermore, we developed a speed-up procedure to increase the efficiency of the proposed methods. The presented algorithms were exhaustively tested in a well-known large benchmark with 1750 problem instances. Our results indicate that the novel heuristics and metaheuristics are computationally efficient and obtain high-quality solutions.

Suggested Citation

  • Fernando Luis Rossi & Marcelo Seido Nagano, 2022. "Beam search-based heuristics for the mixed no-idle flowshop with total flowtime criterion," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1311-1346, December.
  • Handle: RePEc:spr:orspec:v:44:y:2022:i:4:d:10.1007_s00291-022-00678-9
    DOI: 10.1007/s00291-022-00678-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-022-00678-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-022-00678-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernandez-Viagas, Victor & Ruiz, Rubén & Framinan, Jose M., 2017. "A new vision of approximate methods for the permutation flowshop to minimise makespan: State-of-the-art and computational evaluation," European Journal of Operational Research, Elsevier, vol. 257(3), pages 707-721.
    2. Kalczynski, Pawel Jan & Kamburowski, Jerzy, 2007. "On no-wait and no-idle flow shops with makespan criterion," European Journal of Operational Research, Elsevier, vol. 178(3), pages 677-685, May.
    3. Fernando Luis Rossi & Marcelo Seido Nagano, 2021. "Heuristics for the mixed no-idle flowshop with sequence-dependent setup times," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 72(2), pages 417-443, February.
    4. Framinan, J. M. & Leisten, R., 2003. "An efficient constructive heuristic for flowtime minimisation in permutation flow shops," Omega, Elsevier, vol. 31(4), pages 311-317, August.
    5. Saadani, Nour El Houda & Guinet, Alain & Moalla, Mohamed, 2005. "A travelling salesman approach to solve the F/no-idle/Cmax problem," European Journal of Operational Research, Elsevier, vol. 161(1), pages 11-20, February.
    6. Rad, Shahriar Farahmand & Ruiz, Rubén & Boroojerdian, Naser, 2009. "New high performing heuristics for minimizing makespan in permutation flowshops," Omega, Elsevier, vol. 37(2), pages 331-345, April.
    7. Rajendran, Chandrasekharan & Ziegler, Hans, 1997. "An efficient heuristic for scheduling in a flowshop to minimize total weighted flowtime of jobs," European Journal of Operational Research, Elsevier, vol. 103(1), pages 129-138, November.
    8. Kalczynski, Pawel J. & Kamburowski, Jerzy, 2009. "An empirical analysis of the optimality rate of flow shop heuristics," European Journal of Operational Research, Elsevier, vol. 198(1), pages 93-101, October.
    9. Liu, Jiyin & Reeves, Colin R, 2001. "Constructive and composite heuristic solutions to the P//[summation operator]Ci scheduling problem," European Journal of Operational Research, Elsevier, vol. 132(2), pages 439-452, July.
    10. Vallada, Eva & Ruiz, Rubén, 2010. "Genetic algorithms with path relinking for the minimum tardiness permutation flowshop problem," Omega, Elsevier, vol. 38(1-2), pages 57-67, February.
    11. S. M. Johnson, 1954. "Optimal two‐ and three‐stage production schedules with setup times included," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 1(1), pages 61-68, March.
    12. Richard A. Dudek & Ottis Foy Teuton, 1964. "Development of M -Stage Decision Rule for Scheduling N Jobs Through M Machines," Operations Research, INFORMS, vol. 12(3), pages 471-497, June.
    13. Li, Xiaoping & Wang, Qian & Wu, Cheng, 2009. "Efficient composite heuristics for total flowtime minimization in permutation flow shops," Omega, Elsevier, vol. 37(1), pages 155-164, February.
    14. Gupta, Jatinder N.D. & Stafford, Edward Jr., 2006. "Flowshop scheduling research after five decades," European Journal of Operational Research, Elsevier, vol. 169(3), pages 699-711, March.
    15. M S Nagano & J V Moccellin, 2002. "A high quality solution constructive heuristic for flow shop sequencing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(12), pages 1374-1379, December.
    16. Tunchan Cura, 2015. "An evolutionary algorithm for the permutation flowshop scheduling problem with total tardiness criterion," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 22(3), pages 366-384.
    17. Lee J. Krajewski & Barry E. King & Larry P. Ritzman & Danny S. Wong, 1987. "Kanban, MRP, and Shaping the Manufacturing Environment," Management Science, INFORMS, vol. 33(1), pages 39-57, January.
    18. Pan, Quan-Ke & Ruiz, Rubén, 2014. "An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem," Omega, Elsevier, vol. 44(C), pages 41-50.
    19. Nawaz, Muhammad & Enscore Jr, E Emory & Ham, Inyong, 1983. "A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem," Omega, Elsevier, vol. 11(1), pages 91-95.
    20. J M Framinan & J N D Gupta & R Leisten, 2004. "A review and classification of heuristics for permutation flow-shop scheduling with makespan objective," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1243-1255, December.
    21. Robert H. Storer & S. David Wu & Renzo Vaccari, 1992. "New Search Spaces for Sequencing Problems with Application to Job Shop Scheduling," Management Science, INFORMS, vol. 38(10), pages 1495-1509, October.
    22. Kalczynski, Pawel Jan & Kamburowski, Jerzy, 2007. "On the NEH heuristic for minimizing the makespan in permutation flow shops," Omega, Elsevier, vol. 35(1), pages 53-60, February.
    23. Ronconi, Debora P., 2004. "A note on constructive heuristics for the flowshop problem with blocking," International Journal of Production Economics, Elsevier, vol. 87(1), pages 39-48, January.
    24. Quan-Ke Pan & Ling Wang, 2008. "A novel differential evolution algorithm for no-idle permutation flow-shop scheduling problems," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 2(3), pages 279-297.
    25. Baraz, Daniel & Mosheiov, Gur, 2008. "A note on a greedy heuristic for flow-shop makespan minimization with no machine idle-time," European Journal of Operational Research, Elsevier, vol. 184(2), pages 810-813, January.
    26. Chen-Yang Cheng & Shih-Wei Lin & Pourya Pourhejazy & Kuo-Ching Ying & Yu-Zhe Lin, 2021. "No-Idle Flowshop Scheduling for Energy-Efficient Production: An Improved Optimization Framework," Mathematics, MDPI, vol. 9(12), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Quan-Ke & Ruiz, Rubén, 2014. "An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem," Omega, Elsevier, vol. 44(C), pages 41-50.
    2. Pan, Quan-Ke & Wang, Ling, 2012. "Effective heuristics for the blocking flowshop scheduling problem with makespan minimization," Omega, Elsevier, vol. 40(2), pages 218-229, April.
    3. Fernandez-Viagas, Victor & Ruiz, Rubén & Framinan, Jose M., 2017. "A new vision of approximate methods for the permutation flowshop to minimise makespan: State-of-the-art and computational evaluation," European Journal of Operational Research, Elsevier, vol. 257(3), pages 707-721.
    4. Victor Fernandez-Viagas & Luis Sanchez-Mediano & Alvaro Angulo-Cortes & David Gomez-Medina & Jose Manuel Molina-Pariente, 2022. "The Permutation Flow Shop Scheduling Problem with Human Resources: MILP Models, Decoding Procedures, NEH-Based Heuristics, and an Iterated Greedy Algorithm," Mathematics, MDPI, vol. 10(19), pages 1-32, September.
    5. Ruiz, Rubén & Pan, Quan-Ke & Naderi, Bahman, 2019. "Iterated Greedy methods for the distributed permutation flowshop scheduling problem," Omega, Elsevier, vol. 83(C), pages 213-222.
    6. Liu, Weibo & Jin, Yan & Price, Mark, 2017. "A new improved NEH heuristic for permutation flowshop scheduling problems," International Journal of Production Economics, Elsevier, vol. 193(C), pages 21-30.
    7. Pagnozzi, Federico & Stützle, Thomas, 2019. "Automatic design of hybrid stochastic local search algorithms for permutation flowshop problems," European Journal of Operational Research, Elsevier, vol. 276(2), pages 409-421.
    8. Ruiz-Torres, Alex J. & Ho, Johnny C. & Ablanedo-Rosas, José H., 2011. "Makespan and workstation utilization minimization in a flowshop with operations flexibility," Omega, Elsevier, vol. 39(3), pages 273-282, June.
    9. Fernandez-Viagas, Victor & Molina-Pariente, Jose M. & Framinan, Jose M., 2020. "Generalised accelerations for insertion-based heuristics in permutation flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 282(3), pages 858-872.
    10. Li, Wei & Nault, Barrie R. & Ye, Honghan, 2019. "Trade-off balancing in scheduling for flow shop production and perioperative processes," European Journal of Operational Research, Elsevier, vol. 273(3), pages 817-830.
    11. Libralesso, Luc & Focke, Pablo Andres & Secardin, Aurélien & Jost, Vincent, 2022. "Iterative beam search algorithms for the permutation flowshop," European Journal of Operational Research, Elsevier, vol. 301(1), pages 217-234.
    12. Benavides, Alexander J. & Vera, Antony, 2022. "The reversibility property in a job-insertion tiebreaker for the permutational flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(2), pages 407-421.
    13. Vallada, Eva & Ruiz, Rubén, 2010. "Genetic algorithms with path relinking for the minimum tardiness permutation flowshop problem," Omega, Elsevier, vol. 38(1-2), pages 57-67, February.
    14. Laha, Dipak & Sarin, Subhash C., 2009. "A heuristic to minimize total flow time in permutation flow shop," Omega, Elsevier, vol. 37(3), pages 734-739, June.
    15. Pagnozzi, Federico & Stützle, Thomas, 2021. "Automatic design of hybrid stochastic local search algorithms for permutation flowshop problems with additional constraints," Operations Research Perspectives, Elsevier, vol. 8(C).
    16. K Sheibani, 2010. "A fuzzy greedy heuristic for permutation flow-shop scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(5), pages 813-818, May.
    17. Li, Guo & Li, Na & Sambandam, Narayanasamy & Sethi, Suresh P. & Zhang, Faping, 2018. "Flow shop scheduling with jobs arriving at different times," International Journal of Production Economics, Elsevier, vol. 206(C), pages 250-260.
    18. Yenisey, Mehmet Mutlu & Yagmahan, Betul, 2014. "Multi-objective permutation flow shop scheduling problem: Literature review, classification and current trends," Omega, Elsevier, vol. 45(C), pages 119-135.
    19. Gmys, Jan & Mezmaz, Mohand & Melab, Nouredine & Tuyttens, Daniel, 2020. "A computationally efficient Branch-and-Bound algorithm for the permutation flow-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 284(3), pages 814-833.
    20. Sündüz Dağ, 2013. "An Application On Flowshop Scheduling," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 1(1), pages 47-56, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:44:y:2022:i:4:d:10.1007_s00291-022-00678-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.