IDEAS home Printed from https://ideas.repec.org/r/eee/transb/v36y2002i9p821-835.html
   My bibliography  Save this item

The optimal sizing of the storage space and handling facilities for import containers

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship route schedule design with sea contingency time and port time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 615-633.
  2. Youn Ju Woo & Jang-Ho Song & Kap Hwan Kim, 2016. "Pricing storage of outbound containers in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 28(4), pages 644-668, December.
  3. Chen, Lu & Langevin, André & Lu, Zhiqiang, 2013. "Integrated scheduling of crane handling and truck transportation in a maritime container terminal," European Journal of Operational Research, Elsevier, vol. 225(1), pages 142-152.
  4. Chen, Xiaoming & Zhou, Xuesong & List, George F., 2011. "Using time-varying tolls to optimize truck arrivals at ports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 965-982.
  5. Wiercx, Max & van Kalmthout, Martijn & Wiegmans, Bart, 2019. "Inland waterway terminal yard configuration contributing to sustainability: Modeling yard operations," Research in Transportation Economics, Elsevier, vol. 73(C), pages 4-16.
  6. Mengzhi Ma & Houming Fan & Xiaodan Jiang & Zhenfeng Guo, 2019. "Truck Arrivals Scheduling with Vessel Dependent Time Windows to Reduce Carbon Emissions," Sustainability, MDPI, vol. 11(22), pages 1-26, November.
  7. Niraj Ramesh Dayama & Andreas Ernst & Mohan Krishnamoorthy & Vishnu Narayanan & Narayan Rangaraj, 2017. "New models and algorithms for the container stack rearrangement problem by yard cranes in maritime ports," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 307-348, December.
  8. Jiang, Xinjia & Lee, Loo Hay & Chew, Ek Peng & Han, Yongbin & Tan, Kok Choon, 2012. "A container yard storage strategy for improving land utilization and operation efficiency in a transshipment hub port," European Journal of Operational Research, Elsevier, vol. 221(1), pages 64-73.
  9. Lee, Byung Kwon & Kim, Kap Hwan, 2010. "Comparison and evaluation of various cycle-time models for yard cranes in container terminals," International Journal of Production Economics, Elsevier, vol. 126(2), pages 350-360, August.
  10. Chen, Xiaojing & Li, Feng & Jia, Bin & Wu, Jianjun & Gao, Ziyou & Liu, Ronghui, 2021. "Optimizing storage location assignment in an automotive Ro-Ro terminal," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 249-281.
  11. Kim, Kap Hwan & Kim, Ki Young, 2007. "Optimal price schedules for storage of inbound containers," Transportation Research Part B: Methodological, Elsevier, vol. 41(8), pages 892-905, October.
  12. E Kozan & B Casey, 2007. "Alternative algorithms for the optimization of a simulation model of a multimodal container terminal," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(9), pages 1203-1213, September.
  13. Zhou, Chenhao & Wang, Wencheng & Li, Haobin, 2020. "Container reshuffling considered space allocation problem in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
  14. Yu, Mingzhu & Qi, Xiangtong, 2013. "Storage space allocation models for inbound containers in an automatic container terminal," European Journal of Operational Research, Elsevier, vol. 226(1), pages 32-45.
  15. Chen, Lu & Bostel, Nathalie & Dejax, Pierre & Cai, Jianguo & Xi, Lifeng, 2007. "A tabu search algorithm for the integrated scheduling problem of container handling systems in a maritime terminal," European Journal of Operational Research, Elsevier, vol. 181(1), pages 40-58, August.
  16. Chen, Gang & Govindan, Kannan & Golias, Mihalis M., 2013. "Reducing truck emissions at container terminals in a low carbon economy: Proposal of a queueing-based bi-objective model for optimizing truck arrival pattern," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 55(C), pages 3-22.
  17. Goodchild, Anne V. & Daganzo, Carlos F., 2005. "Crane Double Cycling in Container Ports: Affect on Ship Dwell Time," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt9qp7p7jq, Institute of Transportation Studies, UC Berkeley.
  18. Hyun Ji Park & Sung Won Cho & Abhilasha Nanda & Jin Hyoung Park, 2023. "Data-driven dynamic stacking strategy for export containers in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 35(1), pages 170-195, March.
  19. Liu, Changchun, 2020. "Iterative heuristic for simultaneous allocations of berths, quay cranes, and yards under practical situations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
  20. Jiang, Xin Jia & Jin, Jian Gang, 2017. "A branch-and-price method for integrated yard crane deployment and container allocation in transshipment yards," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 62-75.
  21. Lange, Ann-Kathrin & Nellen, Nicole & Jahn, Carlos, 2022. "Truck appointment systems: How can they be improved and what are their limits?," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Jahn, Carlos & Blecker, Thorsten & Ringle, Christian M. (ed.), Changing Tides: The New Role of Resilience and Sustainability in Logistics and Supply Chain Management – Innovative Approaches for the Shift to a New , volume 33, pages 615-655, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
  22. Miguel Hervás-Peralta & Sara Poveda-Reyes & Gemma Dolores Molero & Francisco Enrique Santarremigia & Juan-Pascual Pastor-Ferrando, 2019. "Improving the Performance of Dry and Maritime Ports by Increasing Knowledge about the Most Relevant Functionalities of the Terminal Operating System (TOS)," Sustainability, MDPI, vol. 11(6), pages 1-23, March.
  23. Martin Alcalde, Enrique & Kim, Kap Hwan & Marchán, Sergi Saurí, 2015. "Optimal space for storage yard considering yard inventory forecasts and terminal performance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 101-128.
  24. Amir Gharehgozli & Nima Zaerpour & Rene Koster, 2020. "Container terminal layout design: transition and future," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(4), pages 610-639, December.
  25. Goodchild, A. V. & Daganzo, C. F., 2004. "Reducing Ship Turn-Around Time Using Double-Cycling," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt86r4p6sc, Institute of Transportation Studies, UC Berkeley.
  26. Lu Zhen & Ek Peng Chew & Loo Hay Lee, 2011. "An Integrated Model for Berth Template and Yard Template Planning in Transshipment Hubs," Transportation Science, INFORMS, vol. 45(4), pages 483-504, November.
  27. Anne V. Goodchild & Carlos F. Daganzo, 2006. "Double-Cycling Strategies for Container Ships and Their Effect on Ship Loading and Unloading Operations," Transportation Science, INFORMS, vol. 40(4), pages 473-483, November.
  28. Zhang, Canrong & Guan, Hao & Yuan, Yifei & Chen, Weiwei & Wu, Tao, 2020. "Machine learning-driven algorithms for the container relocation problem," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 102-131.
  29. Lee, Der-Horng & Jin, Jian Gang & Chen, Jiang Hang, 2012. "Terminal and yard allocation problem for a container transshipment hub with multiple terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 516-528.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.