IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt9qp7p7jq.html
   My bibliography  Save this paper

Crane Double Cycling in Container Ports: Affect on Ship Dwell Time

Author

Listed:
  • Goodchild, Anne V.
  • Daganzo, Carlos F.

Abstract

Loading ships as they are unloaded (double-cycling) can improve the efficiency of a quay crane and thus container port. This paper describes the double-cycling problem, and presents two solution algorithms and simple formulae to estimate reductions in the number of operations, and operating time. The problem is formulated as a scheduling problem. Small problems can be solved to optimality with a standard numerical solver, but problems of typical size are computationally burdensome and terminated after 10 hours with optimality gaps larger than 50%. A formula for an improved lower bound to the optimal solution is developed and shows the optimality gaps are actually below 2.5% in all cases. The paper presents a greedy algorithm that can obtain solutions in seconds. A formula for an upper bound to the greedy algorithm's performance can be used to accurately predict crane performance. The problem is extended to include an analysis of double-cycling when ships have deck hatches. Results are presented for many simulated vessels, and compared to empirical data from a real-world trial. The paper demonstrates that analytical methods can be used in addition to numerical methods to provide greater insight. More importantly, the paper demonstrates that double-cycling can create significant efficiency gains.

Suggested Citation

  • Goodchild, Anne V. & Daganzo, Carlos F., 2005. "Crane Double Cycling in Container Ports: Affect on Ship Dwell Time," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt9qp7p7jq, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt9qp7p7jq
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/9qp7p7jq.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. I F A Vis & R de Koster & K J Roodbergen & L W P Peeters, 2001. "Determination of the number of automated guided vehicles required at a semi-automated container terminal," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(4), pages 409-417, April.
    2. Carlos F. Daganzo, 1990. "The Productivity of Multipurpose Seaport Terminals," Transportation Science, INFORMS, vol. 24(3), pages 205-216, August.
    3. De Castilho, Bernardo & Daganzo, Carlos F., 1993. "Handling Strategies for Import Containers at Marine Terminals," University of California Transportation Center, Working Papers qt5gr4622f, University of California Transportation Center.
    4. David Applegate & William Cook, 1991. "A Computational Study of the Job-Shop Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 3(2), pages 149-156, May.
    5. Notteboom Theo E., 2004. "Container Shipping And Ports: An Overview," Review of Network Economics, De Gruyter, vol. 3(2), pages 1-21, June.
    6. de Castillo, Bernardo & Daganzo, Carlos F., 1993. "Handling strategies for import containers at marine terminals," Transportation Research Part B: Methodological, Elsevier, vol. 27(2), pages 151-166, April.
    7. Kim, Kap Hwan & Kim, Hong Bae, 2002. "The optimal sizing of the storage space and handling facilities for import containers," Transportation Research Part B: Methodological, Elsevier, vol. 36(9), pages 821-835, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anne V. Goodchild & Carlos F. Daganzo, 2006. "Double-Cycling Strategies for Container Ships and Their Effect on Ship Loading and Unloading Operations," Transportation Science, INFORMS, vol. 40(4), pages 473-483, November.
    2. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.
    3. Yanling Chu & Xiaoju Zhang & Zhongzhen Yang, 2017. "Multiple quay cranes scheduling for double cycling in container terminals," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-19, July.
    4. Goodchild, Anne V. & Daganzo, Carlos, 2005. "Performance Comparison of Crane Double CyclingStrategies," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt65s0d62v, Institute of Transportation Studies, UC Berkeley.
    5. Liu, Ming & Chu, Feng & Zhang, Zizhen & Chu, Chengbin, 2015. "A polynomial-time heuristic for the quay crane double-cycling problem with internal-reshuffling operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 52-74.
    6. Dusan Ku & Tiru S. Arthanari, 2016. "On double cycling for container port productivity improvement," Annals of Operations Research, Springer, vol. 243(1), pages 55-70, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anne V. Goodchild & Carlos F. Daganzo, 2006. "Double-Cycling Strategies for Container Ships and Their Effect on Ship Loading and Unloading Operations," Transportation Science, INFORMS, vol. 40(4), pages 473-483, November.
    2. Cordeau, Jean-Francois & Gaudioso, Manlio & Laporte, Gilbert & Moccia, Luigi, 2007. "The service allocation problem at the Gioia Tauro Maritime Terminal," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1167-1184, January.
    3. Kim, Kap Hwan & Kim, Ki Young, 2007. "Optimal price schedules for storage of inbound containers," Transportation Research Part B: Methodological, Elsevier, vol. 41(8), pages 892-905, October.
    4. Legato, Pasquale & Mazza, Rina M., 2001. "Berth planning and resources optimisation at a container terminal via discrete event simulation," European Journal of Operational Research, Elsevier, vol. 133(3), pages 537-547, September.
    5. Ebru K. Bish & Thin‐Yin Leong & Chung‐Lun Li & Jonathan W. C. Ng & David Simchi‐Levi, 2001. "Analysis of a new vehicle scheduling and location problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(5), pages 363-385, August.
    6. Niraj Ramesh Dayama & Andreas Ernst & Mohan Krishnamoorthy & Vishnu Narayanan & Narayan Rangaraj, 2017. "New models and algorithms for the container stack rearrangement problem by yard cranes in maritime ports," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 307-348, December.
    7. Lee, Byung Kwon & Kim, Kap Hwan, 2010. "Comparison and evaluation of various cycle-time models for yard cranes in container terminals," International Journal of Production Economics, Elsevier, vol. 126(2), pages 350-360, August.
    8. Vis, Iris F. A. & de Koster, Rene, 2003. "Transshipment of containers at a container terminal: An overview," European Journal of Operational Research, Elsevier, vol. 147(1), pages 1-16, May.
    9. Jean-François Cordeau & Gilbert Laporte & Pasquale Legato & Luigi Moccia, 2005. "Models and Tabu Search Heuristics for the Berth-Allocation Problem," Transportation Science, INFORMS, vol. 39(4), pages 526-538, November.
    10. Jiang, Xinjia & Lee, Loo Hay & Chew, Ek Peng & Han, Yongbin & Tan, Kok Choon, 2012. "A container yard storage strategy for improving land utilization and operation efficiency in a transshipment hub port," European Journal of Operational Research, Elsevier, vol. 221(1), pages 64-73.
    11. Hyun Ji Park & Sung Won Cho & Abhilasha Nanda & Jin Hyoung Park, 2023. "Data-driven dynamic stacking strategy for export containers in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 35(1), pages 170-195, March.
    12. Briskorn, Dirk & Drexl, Andreas & Hartmann, Sönke, 2005. "Inventory based dispatching of automated guided vehicles on container terminals," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 596, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    13. Kim, Kap Hwan & Park, Kang Tae, 2003. "A note on a dynamic space-allocation method for outbound containers," European Journal of Operational Research, Elsevier, vol. 148(1), pages 92-101, July.
    14. Gharehgozli, A.H. & Roy, D. & de Koster, M.B.M., 2014. "Sea Container Terminals," ERIM Report Series Research in Management ERS-2014-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    15. Imai, Akio & Sasaki, Kazuya & Nishimura, Etsuko & Papadimitriou, Stratos, 2006. "Multi-objective simultaneous stowage and load planning for a container ship with container rehandle in yard stacks," European Journal of Operational Research, Elsevier, vol. 171(2), pages 373-389, June.
    16. Zhang, Chuqian & Wan, Yat-wah & Liu, Jiyin & Linn, Richard J., 2002. "Dynamic crane deployment in container storage yards," Transportation Research Part B: Methodological, Elsevier, vol. 36(6), pages 537-555, July.
    17. Voß, Andre & Guckenbiehl, Gabriel & Schütt, Holger & Buer, Tobias, 2016. "A storage strategy with dynamic bay reservations for container terminals," Bremen Computational Logistics Group Working Papers 4, University of Bremen, Computational Logistics Junior Research Group.
    18. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    19. Hartmann, Sönke, 2002. "Generating scenarios for simulation and optimization of container terminal logistics," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 564, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    20. Nourinejad, Mehdi & Bahrami, Sina & Roorda, Matthew J., 2018. "Designing parking facilities for autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 110-127.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt9qp7p7jq. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.