IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v126y2010i2p350-360.html
   My bibliography  Save this article

Comparison and evaluation of various cycle-time models for yard cranes in container terminals

Author

Listed:
  • Lee, Byung Kwon
  • Kim, Kap Hwan

Abstract

Yard cranes are important pieces of handling equipment in container yards. This study analyzes cycle times of various handling operations of yard cranes, including receiving, loading, discharging, and delivery operations. An operation cycle is divided into elementary movements, and formulas for expected time and variance of each elementary movement are derived analytically. Cycle times of various types of yard crane are compared with each other analytically and numerically. The accuracy of the formulas is evaluated through a simulation study.

Suggested Citation

  • Lee, Byung Kwon & Kim, Kap Hwan, 2010. "Comparison and evaluation of various cycle-time models for yard cranes in container terminals," International Journal of Production Economics, Elsevier, vol. 126(2), pages 350-360, August.
  • Handle: RePEc:eee:proeco:v:126:y:2010:i:2:p:350-360
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(10)00136-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Milorad Vidovic & Kap Kim, 2006. "Estimating the cycle time of three-stage material handling systems," Annals of Operations Research, Springer, vol. 144(1), pages 181-200, April.
    2. De Castilho, Bernardo & Daganzo, Carlos F., 1993. "Handling Strategies for Import Containers at Marine Terminals," University of California Transportation Center, Working Papers qt5gr4622f, University of California Transportation Center.
    3. Yavuz A. Bozer & John A. White, 1990. "Design and Performance Models for End-of-Aisle Order Picking Systems," Management Science, INFORMS, vol. 36(7), pages 852-866, July.
    4. Wen, Charlie & Eksioglu, Sandra Duni & Greenwood, Allen & Zhang, Shu, 2010. "Crane scheduling in a shipbuilding environment," International Journal of Production Economics, Elsevier, vol. 124(1), pages 40-50, March.
    5. Lee, Byung Kwon & Kim, Kap Hwan, 2010. "Optimizing the block size in container yards," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(1), pages 120-135, January.
    6. de Castillo, Bernardo & Daganzo, Carlos F., 1993. "Handling strategies for import containers at marine terminals," Transportation Research Part B: Methodological, Elsevier, vol. 27(2), pages 151-166, April.
    7. Kim, Kap Hwan & Kim, Hong Bae, 2002. "The optimal sizing of the storage space and handling facilities for import containers," Transportation Research Part B: Methodological, Elsevier, vol. 36(9), pages 821-835, November.
    8. Chew, Ek Peng & Tang, Loon Ching, 1999. "Travel time analysis for general item location assignment in a rectangular warehouse," European Journal of Operational Research, Elsevier, vol. 112(3), pages 582-597, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengzhi Ma & Houming Fan & Xiaodan Jiang & Zhenfeng Guo, 2019. "Truck Arrivals Scheduling with Vessel Dependent Time Windows to Reduce Carbon Emissions," Sustainability, MDPI, vol. 11(22), pages 1-26, November.
    2. Zhou, Chenhao & Lee, Byung Kwon & Li, Haobin, 2020. "Integrated optimization on yard crane scheduling and vehicle positioning at container yards," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    3. Martin Alcalde, Enrique & Kim, Kap Hwan & Marchán, Sergi Saurí, 2015. "Optimal space for storage yard considering yard inventory forecasts and terminal performance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 101-128.
    4. Amir Gharehgozli & Nima Zaerpour & Rene Koster, 2020. "Container terminal layout design: transition and future," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(4), pages 610-639, December.
    5. Dawn Russell & Kusumal Ruamsook & Violeta Roso, 2022. "Managing supply chain uncertainty by building flexibility in container port capacity: a logistics triad perspective and the COVID-19 case," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(1), pages 92-113, March.
    6. Zhang, Xiaoju & Zeng, Qingcheng & Yang, Zhongzhen, 2016. "Modeling the mixed storage strategy for quay crane double cycling in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 171-187.
    7. Basallo-Triana, Mario José & Bravo-Bastidas, Juan José & Vidal-Holguín, Carlos Julio, 2022. "A rail-road transshipment yard picture," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goodchild, Anne V. & Daganzo, Carlos F., 2005. "Crane Double Cycling in Container Ports: Affect on Ship Dwell Time," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt9qp7p7jq, Institute of Transportation Studies, UC Berkeley.
    2. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    3. Anne V. Goodchild & Carlos F. Daganzo, 2006. "Double-Cycling Strategies for Container Ships and Their Effect on Ship Loading and Unloading Operations," Transportation Science, INFORMS, vol. 40(4), pages 473-483, November.
    4. Kim, Kap Hwan & Kim, Ki Young, 2007. "Optimal price schedules for storage of inbound containers," Transportation Research Part B: Methodological, Elsevier, vol. 41(8), pages 892-905, October.
    5. Niraj Ramesh Dayama & Andreas Ernst & Mohan Krishnamoorthy & Vishnu Narayanan & Narayan Rangaraj, 2017. "New models and algorithms for the container stack rearrangement problem by yard cranes in maritime ports," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 307-348, December.
    6. Zhang, Xiaoju & Zeng, Qingcheng & Yang, Zhongzhen, 2016. "Modeling the mixed storage strategy for quay crane double cycling in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 171-187.
    7. Saurí, S. & Martín, E., 2011. "Space allocating strategies for improving import yard performance at marine terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1038-1057.
    8. Jiang, Xinjia & Lee, Loo Hay & Chew, Ek Peng & Han, Yongbin & Tan, Kok Choon, 2012. "A container yard storage strategy for improving land utilization and operation efficiency in a transshipment hub port," European Journal of Operational Research, Elsevier, vol. 221(1), pages 64-73.
    9. Jang, Dong-Won & Kim, Se Won & Kim, Kap Hwan, 2013. "The optimization of mixed block stacking requiring relocations," International Journal of Production Economics, Elsevier, vol. 143(2), pages 256-262.
    10. Hyun Ji Park & Sung Won Cho & Abhilasha Nanda & Jin Hyoung Park, 2023. "Data-driven dynamic stacking strategy for export containers in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 35(1), pages 170-195, March.
    11. Briskorn, Dirk & Drexl, Andreas & Hartmann, Sönke, 2005. "Inventory based dispatching of automated guided vehicles on container terminals," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 596, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    12. Martin Alcalde, Enrique & Kim, Kap Hwan & Marchán, Sergi Saurí, 2015. "Optimal space for storage yard considering yard inventory forecasts and terminal performance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 101-128.
    13. Kim, Kap Hwan & Park, Kang Tae, 2003. "A note on a dynamic space-allocation method for outbound containers," European Journal of Operational Research, Elsevier, vol. 148(1), pages 92-101, July.
    14. Gharehgozli, A.H. & Roy, D. & de Koster, M.B.M., 2014. "Sea Container Terminals," ERIM Report Series Research in Management ERS-2014-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    15. Imai, Akio & Sasaki, Kazuya & Nishimura, Etsuko & Papadimitriou, Stratos, 2006. "Multi-objective simultaneous stowage and load planning for a container ship with container rehandle in yard stacks," European Journal of Operational Research, Elsevier, vol. 171(2), pages 373-389, June.
    16. Zhang, Chuqian & Wan, Yat-wah & Liu, Jiyin & Linn, Richard J., 2002. "Dynamic crane deployment in container storage yards," Transportation Research Part B: Methodological, Elsevier, vol. 36(6), pages 537-555, July.
    17. Voß, Andre & Guckenbiehl, Gabriel & Schütt, Holger & Buer, Tobias, 2016. "A storage strategy with dynamic bay reservations for container terminals," Bremen Computational Logistics Group Working Papers 4, University of Bremen, Computational Logistics Junior Research Group.
    18. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2010. "Research on warehouse design and performance evaluation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 203(3), pages 539-549, June.
    19. Hartmann, Sönke, 2002. "Generating scenarios for simulation and optimization of container terminal logistics," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 564, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    20. Nourinejad, Mehdi & Bahrami, Sina & Roorda, Matthew J., 2018. "Designing parking facilities for autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 110-127.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:126:y:2010:i:2:p:350-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.