IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v70y2017icp215-223.html
   My bibliography  Save this item

Recent approaches of unit commitment in the presence of intermittent renewable energy resources: A review

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. T. R. Lalita & G. S. R. Murthy, 2021. "The wind power scheduling problem," OPSEARCH, Springer;Operational Research Society of India, vol. 58(4), pages 810-834, December.
  2. Nikolaidis, Pavlos & Poullikkas, Andreas, 2021. "A novel cluster-based spinning reserve dynamic model for wind and PV power reinforcement," Energy, Elsevier, vol. 234(C).
  3. Massrur, Hamid Reza & Niknam, Taher & Aghaei, Jamshid & Shafie-khah, Miadreza & Catalão, João P.S., 2018. "A stochastic mid-term scheduling for integrated wind-thermal systems using self-adaptive optimization approach: A comparative study," Energy, Elsevier, vol. 155(C), pages 552-564.
  4. Luis Montero & Antonio Bello & Javier Reneses, 2022. "A Review on the Unit Commitment Problem: Approaches, Techniques, and Resolution Methods," Energies, MDPI, vol. 15(4), pages 1-40, February.
  5. Martinek, Janna & Jorgenson, Jennie & Mehos, Mark & Denholm, Paul, 2018. "A comparison of price-taker and production cost models for determining system value, revenue, and scheduling of concentrating solar power plants," Applied Energy, Elsevier, vol. 231(C), pages 854-865.
  6. Mahler, Valentin & Girard, Robin & Kariniotakis, Georges, 2022. "Data-driven structural modeling of electricity price dynamics," Energy Economics, Elsevier, vol. 107(C).
  7. Alsnosy Balbaa & R. A. Swief & Noha H. El-Amary, 2019. "Smart Integration Based on Hybrid Particle Swarm Optimization Technique for Carbon Dioxide Emission Reduction in Eco-Ports," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
  8. Wang, Jinda & Zhou, Zhigang & Zhao, Jianing & Zheng, Jinfu, 2018. "Improving wind power integration by a novel short-term dispatch model based on free heat storage and exhaust heat recycling," Energy, Elsevier, vol. 160(C), pages 940-953.
  9. Doubleday, Kate & Lara, José Daniel & Hodge, Bri-Mathias, 2022. "Investigation of stochastic unit commitment to enable advanced flexibility measures for high shares of solar PV," Applied Energy, Elsevier, vol. 321(C).
  10. Ajagekar, Akshay & You, Fengqi, 2019. "Quantum computing for energy systems optimization: Challenges and opportunities," Energy, Elsevier, vol. 179(C), pages 76-89.
  11. Chyong, Chi Kong & Newbery, David, 2022. "A unit commitment and economic dispatch model of the GB electricity market – Formulation and application to hydro pumped storage," Energy Policy, Elsevier, vol. 170(C).
  12. Konneh, Keifa Vamba & Adewuyi, Oludamilare Bode & Gamil, Mahmoud M. & Fazli, Agha Mohammad & Senjyu, Tomonobu, 2023. "A scenario-based multi-attribute decision making approach for optimal design of a hybrid off-grid system," Energy, Elsevier, vol. 265(C).
  13. Vasilios A. Tsalavoutis & Constantinos G. Vrionis & Athanasios I. Tolis, 2021. "Optimizing a unit commitment problem using an evolutionary algorithm and a plurality of priority lists," Operational Research, Springer, vol. 21(1), pages 1-54, March.
  14. Harun Or Rashid Howlader & Oludamilare Bode Adewuyi & Ying-Yi Hong & Paras Mandal & Ashraf Mohamed Hemeida & Tomonobu Senjyu, 2019. "Energy Storage System Analysis Review for Optimal Unit Commitment," Energies, MDPI, vol. 13(1), pages 1-21, December.
  15. Rajitha Udawalpola & Taisuke Masuta & Taisei Yoshioka & Kohei Takahashi & Hideaki Ohtake, 2021. "Reduction of Power Imbalances Using Battery Energy Storage System in a Bulk Power System with Extremely Large Photovoltaics Interactions," Energies, MDPI, vol. 14(3), pages 1-27, January.
  16. Gerrit Erichsen & Tobias Zimmermann & Alfons Kather, 2019. "Effect of Different Interval Lengths in a Rolling Horizon MILP Unit Commitment with Non-Linear Control Model for a Small Energy System," Energies, MDPI, vol. 12(6), pages 1-24, March.
  17. Ahmed, Faraedoon & Al Kez, Dlzar & McLoone, Seán & Best, Robert James & Cameron, Ché & Foley, Aoife, 2023. "Dynamic grid stability in low carbon power systems with minimum inertia," Renewable Energy, Elsevier, vol. 210(C), pages 486-506.
  18. Wyrwa, Artur & Suwała, Wojciech & Pluta, Marcin & Raczyński, Maciej & Zyśk, Janusz & Tokarski, Stanisław, 2022. "A new approach for coupling the short- and long-term planning models to design a pathway to carbon neutrality in a coal-based power system," Energy, Elsevier, vol. 239(PE).
  19. Hongxia Liu & Huiling Wang & Zongtang Xie, 2019. "Wind utilization and carbon emissions equilibrium: Scheduling strategy for wind-thermal generation system," Energy & Environment, , vol. 30(6), pages 1111-1131, September.
  20. Koltsaklis, Nikolaos E. & Knápek, Jaroslav, 2023. "Assessing flexibility options in electricity market clearing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
  21. Luís A. C. Roque & Dalila B. M. M. Fontes & Fernando A. C. C. Fontes, 2017. "A Metaheuristic Approach to the Multi-Objective Unit Commitment Problem Combining Economic and Environmental Criteria," Energies, MDPI, vol. 10(12), pages 1-25, December.
  22. Abdi, Hamdi, 2021. "Profit-based unit commitment problem: A review of models, methods, challenges, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
  23. Andersen, Anders N. & Østergaard, Poul Alberg, 2019. "Analytic versus solver-based calculated daily operations of district energy plants," Energy, Elsevier, vol. 175(C), pages 333-344.
  24. Cebulla, F. & Fichter, T., 2017. "Merit order or unit-commitment: How does thermal power plant modeling affect storage demand in energy system models?," Renewable Energy, Elsevier, vol. 105(C), pages 117-132.
  25. Valentin Mahler & Robin Girard & Georges Kariniotakis, 2021. "Data-driven Structural Modeling of Electricity Price Dynamics," Working Papers hal-03445396, HAL.
  26. Karar Mahmoud & Mohamed Abdel-Nasser & Eman Mustafa & Ziad M. Ali, 2020. "Improved Salp–Swarm Optimizer and Accurate Forecasting Model for Dynamic Economic Dispatch in Sustainable Power Systems," Sustainability, MDPI, vol. 12(2), pages 1-21, January.
  27. Gerardo J. Osório & Miadreza Shafie-khah & Juan M. Lujano-Rojas & João P. S. Catalão, 2018. "Scheduling Model for Renewable Energy Sources Integration in an Insular Power System," Energies, MDPI, vol. 11(1), pages 1-16, January.
  28. Erica Ocampo & Yen-Chih Huang & Cheng-Chien Kuo, 2020. "Feasible Reserve in Day-Ahead Unit Commitment Using Scenario-Based Optimization," Energies, MDPI, vol. 13(20), pages 1-17, October.
  29. Zhiwei Li & Tianran Jin & Shuqiang Zhao & Jinshan Liu, 2018. "Power System Day-Ahead Unit Commitment Based on Chance-Constrained Dependent Chance Goal Programming," Energies, MDPI, vol. 11(7), pages 1-20, July.
  30. Zheng, Lingwei & Zhou, Xingqiu & Qiu, Qi & Yang, Lan, 2020. "Day-ahead optimal dispatch of an integrated energy system considering time-frequency characteristics of renewable energy source output," Energy, Elsevier, vol. 209(C).
  31. Yin, Linfei & Gao, Qi & Zhao, Lulin & Wang, Tao, 2020. "Expandable deep learning for real-time economic generation dispatch and control of three-state energies based future smart grids," Energy, Elsevier, vol. 191(C).
  32. Konneh, Keifa Vamba & Masrur, Hasan & Konneh, David A. & Senjyu, Tomonobu, 2022. "Independent or complementary power system configuration: A decision making approach for sustainable electrification of an urban environment in Sierra Leone," Energy, Elsevier, vol. 239(PD).
  33. Ying-Yi Hong & Gerard Francesco DG. Apolinario, 2021. "Uncertainty in Unit Commitment in Power Systems: A Review of Models, Methods, and Applications," Energies, MDPI, vol. 14(20), pages 1-47, October.
  34. Zhao, Ning & You, Fengqi, 2022. "Sustainable power systems operations under renewable energy induced disjunctive uncertainties via machine learning-based robust optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
  35. Junjie Jia & Nan Yang & Chao Xing & Haoze Chen & Songkai Liu & Yuehua Huang & Binxin Zhu, 2019. "An Improved Constrained Order Optimization Algorithm for Uncertain SCUC Problem Solving," Energies, MDPI, vol. 12(23), pages 1-19, November.
  36. Payal Mitra & Soumendu Sarkar & Tarun Mehta & Atul Kumar, 2022. "Unit Commitment in a Federalized Power Market: A Mixed Integer Programming Approach," Working papers 323, Centre for Development Economics, Delhi School of Economics.
  37. Abdin, Islam F. & Zio, Enrico, 2018. "An integrated framework for operational flexibility assessment in multi-period power system planning with renewable energy production," Applied Energy, Elsevier, vol. 222(C), pages 898-914.
  38. Papadimitrakis, M. & Giamarelos, N. & Stogiannos, M. & Zois, E.N. & Livanos, N.A.-I. & Alexandridis, A., 2021. "Metaheuristic search in smart grid: A review with emphasis on planning, scheduling and power flow optimization applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
  39. Saleh Abujarad & Mohd Wazir Mustafa & Jasrul Jamani Jamian & Abdirahman M. Abdilahi & Jeroen D. M. De Kooning & Jan Desmet & Lieven Vandevelde, 2020. "An Adjusted Weight Metric to Quantify Flexibility Available in Conventional Generators for Low Carbon Power Systems," Energies, MDPI, vol. 13(21), pages 1-19, October.
  40. Li, Wanning & Tesfatsion, Leigh, 2017. "An 8-Zone ISO-NE Test System with Physically-Based Wind Power," ISU General Staff Papers 201701310800001017, Iowa State University, Department of Economics.
  41. Marcin Pluta & Artur Wyrwa & Wojciech Suwała & Janusz Zyśk & Maciej Raczyński & Stanisław Tokarski, 2020. "A Generalized Unit Commitment and Economic Dispatch Approach for Analysing the Polish Power System under High Renewable Penetration," Energies, MDPI, vol. 13(8), pages 1-18, April.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.