IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v13y2009i3p663-672.html
   My bibliography  Save this item

Waste-heat recovery potential in Turkish textile industry: Case study for city of Bursa

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Qilu Chen & Yutao Shi & Zhi Zhuang & Li Weng & Chengjun Xu & Jianqiu Zhou, 2021. "Numerical Analysis of Liquid–Liquid Heat Pipe Heat Exchanger Based on a Novel Model," Energies, MDPI, vol. 14(3), pages 1-19, January.
  2. Ngai, E.W.T. & To, Chester K.M. & Ching, Vincent S.M. & Chan, L.K. & Lee, Maggie C.M. & Choi, Y.S. & Chai, P.Y.F., 2012. "Development of the conceptual model of energy and utility management in textile processing: A soft systems approach," International Journal of Production Economics, Elsevier, vol. 135(2), pages 607-617.
  3. Lorenzo Ciappi & Daniele Fiaschi & Giampaolo Manfrida & Simone Salvadori & Jacek Smolka & Lorenzo Talluri, 2019. "Heat Recovery for a Textile Stenter: CFD Analysis of Air Curtain Benefits," Energies, MDPI, vol. 12(3), pages 1-22, February.
  4. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
  5. Ma, Hongting & Yin, Lihui & Shen, Xiaopeng & Lu, Wenqian & Sun, Yuexia & Zhang, Yufeng & Deng, Na, 2016. "Experimental study on heat pipe assisted heat exchanger used for industrial waste heat recovery," Applied Energy, Elsevier, vol. 169(C), pages 177-186.
  6. Olga Orynycz & Karol Tucki, 2020. "Technology Management Leading to a Smart System Solution Assuring a Decrease of Energy Consumption in Recreational Facilities," Energies, MDPI, vol. 13(13), pages 1-22, July.
  7. Sun, Zhixin & Gao, Lin & Wang, Jiangfeng & Dai, Yiping, 2012. "Dynamic optimal design of a power generation system utilizing industrial waste heat considering parameter fluctuations of exhaust gas," Energy, Elsevier, vol. 44(1), pages 1035-1043.
  8. El Fil, Bachir & Garimella, Srinivas, 2021. "Waste heat recovery in commercial gas-fired tumble dryers," Energy, Elsevier, vol. 218(C).
  9. Shen, Chong & Zhang, Maoyong & Li, Xianting, 2017. "Experimental investigation on the thermal performance of cooling pipes embedded in a graphitization furnace," Energy, Elsevier, vol. 121(C), pages 55-65.
  10. Cuce, Pinar Mert & Riffat, Saffa, 2015. "A comprehensive review of heat recovery systems for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 665-682.
  11. Tang, Song-Zhen & He, Yan & He, Ya-Ling & Wang, Fei-Long, 2020. "Enhancing the thermal response of a latent heat storage system for suppressing temperature fluctuation of dusty flue gas," Applied Energy, Elsevier, vol. 266(C).
  12. Hervas-Blasco, Estefanía & Pitarch, Miquel & Navarro-Peris, Emilio & Corberán, José M., 2017. "Optimal sizing of a heat pump booster for sanitary hot water production to maximize benefit for the substitution of gas boilers," Energy, Elsevier, vol. 127(C), pages 558-570.
  13. Yurim Kim & Jonghun Lim & Jae Yun Shim & Seokil Hong & Heedong Lee & Hyungtae Cho, 2022. "Optimization of Heat Exchanger Network via Pinch Analysis in Heat Pump-Assisted Textile Industry Wastewater Heat Recovery System," Energies, MDPI, vol. 15(9), pages 1-16, April.
  14. Ma, Hongting & Du, Na & Zhang, Zeyu & Lyu, Fan & Deng, Na & Li, Cong & Yu, Shaojie, 2017. "Assessment of the optimum operation conditions on a heat pipe heat exchanger for waste heat recovery in steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 50-60.
  15. Xia, Xiaoxia & Liu, Zhipeng & Wang, Zhiqi & Sun, Tong & Zhang, Hualong & Zhang, Sifeng, 2023. "Thermo-economic-environmental optimization design of dual-loop organic Rankine cycle under fluctuating heat source temperature," Energy, Elsevier, vol. 264(C).
  16. Chae, Kyu-Jung & Ren, Xianghao, 2016. "Flexible and stable heat energy recovery from municipal wastewater treatment plants using a fixed-inverter hybrid heat pump system," Applied Energy, Elsevier, vol. 179(C), pages 565-574.
  17. Hasanbeigi, Ali & Price, Lynn, 2012. "A review of energy use and energy efficiency technologies for the textile industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3648-3665.
  18. Tian, En & He, Ya-Ling & Tao, Wen-Quan, 2017. "Research on a new type waste heat recovery gravity heat pipe exchanger," Applied Energy, Elsevier, vol. 188(C), pages 586-594.
  19. Khanmohammadi, Shoaib & Saadat-Targhi, Morteza & Nabati, Amin, 2022. "Energy and exergy analyses of a new integrated system for textile factory using geothermal energy source," Energy, Elsevier, vol. 257(C).
  20. Ali Hasanbeigi & M. Jibran S. Zuberi, 2022. "Electrification of Steam and Thermal Oil Boilers in the Textile Industry: Techno-Economic Analysis for China, Japan, and Taiwan," Energies, MDPI, vol. 15(23), pages 1-21, December.
  21. Sanaei, Sayyed Mohammad & Nakata, Toshihiko, 2012. "Optimum design of district heating: Application of a novel methodology for improved design of community scale integrated energy systems," Energy, Elsevier, vol. 38(1), pages 190-204.
  22. Kandilli, Canan & Koclu, Aytac, 2011. "Assessment of the optimum operation conditions of a plate heat exchanger for waste heat recovery in textile industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4424-4431.
  23. Khatita, Mohammed A. & Ahmed, Tamer S. & Ashour, Fatma. H. & Ismail, Ibrahim M., 2014. "Power generation using waste heat recovery by organic Rankine cycle in oil and gas sector in Egypt: A case study," Energy, Elsevier, vol. 64(C), pages 462-472.
  24. Juyeong Seo & Haneul Mun & Jae Yun Shim & Seok Il Hong & Hee Dong Lee & Inkyu Lee, 2022. "Advanced Design of Integrated Heat Recovery and Supply System Using Heated Water Storage for Textile Dyeing Process," Energies, MDPI, vol. 15(19), pages 1-16, October.
  25. Ali Hasanbeigi & M. Jibran S. Zuberi, 2022. "Electrified Process Heating in Textile Wet-Processing Industry: A Techno-Economic Analysis for China, Japan, and Taiwan," Energies, MDPI, vol. 15(23), pages 1-27, November.
  26. Dal Magro, Fabio & Jimenez-Arreola, Manuel & Romagnoli, Alessandro, 2017. "Improving energy recovery efficiency by retrofitting a PCM-based technology to an ORC system operating under thermal power fluctuations," Applied Energy, Elsevier, vol. 208(C), pages 972-985.
  27. Kumar, Shravan & Thakur, Jagruti & Gardumi, Francesco, 2022. "Techno-economic modelling and optimisation of excess heat and cold recovery for industries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.