IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v94y2016icp422-430.html
   My bibliography  Save this item

2050 LCOE (Levelized Cost of Energy) projection for a hybrid PV (photovoltaic)-CSP (concentrated solar power) plant in the Atacama Desert, Chile

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. José Balibrea-Iniesta, 2020. "Economic Analysis of Renewable Energy Regulation in France: A Case Study for Photovoltaic Plants Based on Real Options," Energies, MDPI, vol. 13(11), pages 1-19, June.
  2. Vittorio Sessa & Ramchandra Bhandari & Abdramane Ba, 2021. "Rural Electrification Pathways: An Implementation of LEAP and GIS Tools in Mali," Energies, MDPI, vol. 14(11), pages 1-19, June.
  3. Nissen, Ulrich & Harfst, Nathanael, 2019. "Shortcomings of the traditional “levelized cost of energy” [LCOE] for the determination of grid parity," Energy, Elsevier, vol. 171(C), pages 1009-1016.
  4. Pedro Cerezal-Mezquita & Waldo Bugueño-Muñoz, 2022. "Drying of Carrot Strips in Indirect Solar Dehydrator with Photovoltaic Cell and Thermal Energy Storage," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
  5. Shen, Wei & Chen, Xi & Qiu, Jing & Hayward, Jennifier A & Sayeef, Saad & Osman, Peter & Meng, Ke & Dong, Zhao Yang, 2020. "A comprehensive review of variable renewable energy levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
  6. Lamnatou, Chr. & Chemisana, D., 2017. "Concentrating solar systems: Life Cycle Assessment (LCA) and environmental issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 916-932.
  7. Zurita, Adriana & Mata-Torres, Carlos & Cardemil, José M. & Guédez, Rafael & Escobar, Rodrigo A., 2021. "Multi-objective optimal design of solar power plants with storage systems according to dispatch strategy," Energy, Elsevier, vol. 237(C).
  8. Curto, Domenico & Favuzza, Salvatore & Franzitta, Vincenzo & Guercio, Andrea & Amparo Navarro Navia, Milagros & Telaretti, Enrico & Zizzo, Gaetano, 2022. "Grid Stability Improvement Using Synthetic Inertia by Battery Energy Storage Systems in Small Islands," Energy, Elsevier, vol. 254(PC).
  9. Samaniego Rascón, Danyela & Ferreira, Almerindo D. & Gameiro da Silva, Manuel, 2017. "Cumulative and momentary skin exposures to solar radiation in central receiver solar systems," Energy, Elsevier, vol. 137(C), pages 336-349.
  10. Soria, Rafael & Lucena, André F.P. & Tomaschek, Jan & Fichter, Tobias & Haasz, Thomas & Szklo, Alexandre & Schaeffer, Roberto & Rochedo, Pedro & Fahl, Ulrich & Kern, Jürgen, 2016. "Modelling concentrated solar power (CSP) in the Brazilian energy system: A soft-linked model coupling approach," Energy, Elsevier, vol. 116(P1), pages 265-280.
  11. Hakimi, M. & Baniasadi, E. & Afshari, E., 2020. "Thermo-economic analysis of photovoltaic, central tower receiver and parabolic trough power plants for Herat city in Afghanistan," Renewable Energy, Elsevier, vol. 150(C), pages 840-853.
  12. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud & Tarmahi, Hakimeh & Gholampour, Maysam, 2016. "Technical and economic assessments of grid-connected photovoltaic power plants: Iran case study," Energy, Elsevier, vol. 114(C), pages 923-934.
  13. Laha, Priyanka & Chakraborty, Basab, 2021. "Low carbon electricity system for India in 2030 based on multi-objective multi-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  14. Asim Kumar Sarker & Abul Kalam Azad & Mohammad G. Rasul & Arun Teja Doppalapudi, 2023. "Prospect of Green Hydrogen Generation from Hybrid Renewable Energy Sources: A Review," Energies, MDPI, vol. 16(3), pages 1-17, February.
  15. José M. Cardemil & Allan R. Starke & Adriana Zurita & Carlos Mata‐Torres & Rodrigo Escobar, 2021. "Integration schemes for hybrid and polygeneration concentrated solar power plants," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(6), November.
  16. Zhao, Zhen-Yu & Chen, Yu-Long & Thomson, John Douglas, 2017. "Levelized cost of energy modeling for concentrated solar power projects: A China study," Energy, Elsevier, vol. 120(C), pages 117-127.
  17. Sampaio, Priscila Gonçalves Vasconcelos & González, Mario Orestes Aguirre, 2017. "Photovoltaic solar energy: Conceptual framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 590-601.
  18. Azouzoute, Alae & Zitouni, Houssain & El Ydrissi, Massaab & Hajjaj, Charaf & Garoum, Mohammed & Bennouna, El Ghali & Ghennioui, Abdellatif, 2021. "Developing a cleaning strategy for hybrid solar plants PV/CSP: Case study for semi-arid climate," Energy, Elsevier, vol. 228(C).
  19. Abdullah Kaya & M. Evren Tok & Muammer Koc, 2019. "A Levelized Cost Analysis for Solar-Energy-Powered Sea Water Desalination in The Emirate of Abu Dhabi," Sustainability, MDPI, vol. 11(6), pages 1-18, March.
  20. Liu, Hongtao & Zhai, Rongrong & Patchigolla, Kumar & Turner, Peter & Yu, Xiaohan & Wang, Peng, 2023. "Multi-objective optimisation of a thermal-storage PV-CSP-wind hybrid power system in three operation modes," Energy, Elsevier, vol. 284(C).
  21. San Miguel, G. & Corona, B., 2018. "Economic viability of concentrated solar power under different regulatory frameworks in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 205-218.
  22. Orioli, Aldo & Di Gangi, Alessandra, 2017. "Six-years-long effects of the Italian policies for photovoltaics on the grid parity of grid-connected photovoltaic systems installed in urban contexts," Energy, Elsevier, vol. 130(C), pages 55-75.
  23. Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.
  24. Valero, Alicia & Valero, Antonio & Calvo, Guiomar & Ortego, Abel, 2018. "Material bottlenecks in the future development of green technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 178-200.
  25. Chennaif, Mohammed & Zahboune, Hassan & Elhafyani, Mohammed & Zouggar, Smail, 2021. "Electric System Cascade Extended Analysis for optimal sizing of an autonomous hybrid CSP/PV/wind system with Battery Energy Storage System and thermal energy storage," Energy, Elsevier, vol. 227(C).
  26. Ghirardi, Elisa & Brumana, Giovanni & Franchini, Giuseppe & Perdichizzi, Antonio, 2021. "The optimal share of PV and CSP for highly renewable power systems in the GCC region," Renewable Energy, Elsevier, vol. 179(C), pages 1990-2003.
  27. Daniele Milone & Domenico Curto & Vincenzo Franzitta & Andrea Guercio & Maurizio Cirrincione & Ali Mohammadi, 2022. "An Economic Approach to Size of a Renewable Energy Mix in Small Islands," Energies, MDPI, vol. 15(6), pages 1-20, March.
  28. Lai, Chun Sing & McCulloch, Malcolm D., 2017. "Levelized cost of electricity for solar photovoltaic and electrical energy storage," Applied Energy, Elsevier, vol. 190(C), pages 191-203.
  29. Sanghyun Sung & Wooyong Jung, 2019. "Economic Competitiveness Evaluation of the Energy Sources: Comparison between a Financial Model and Levelized Cost of Electricity Analysis," Energies, MDPI, vol. 12(21), pages 1-21, October.
  30. Montero, Francisco J. & Kumar, Ramesh & Lamba, Ravita & Escobar, Rodrigo A. & Vashishtha, Manish & Upadhyaya, Sushant & Guzmán, Amador M., 2022. "Hybrid photovoltaic-thermoelectric system: Economic feasibility analysis in the Atacama Desert, Chile," Energy, Elsevier, vol. 239(PB).
  31. Aly, Ahmed & Bernardos, Ana & Fernandez-Peruchena, Carlos M. & Jensen, Steen Solvang & Pedersen, Anders Branth, 2019. "Is Concentrated Solar Power (CSP) a feasible option for Sub-Saharan Africa?: Investigating the techno-economic feasibility of CSP in Tanzania," Renewable Energy, Elsevier, vol. 135(C), pages 1224-1240.
  32. José A. López-Álvarez & Miguel Larrañeta & Elena Pérez-Aparicio & Manuel A. Silva-Pérez & Isidoro Lillo-Bravo, 2021. "An Approach to the Operation Modes and Strategies for Integrated Hybrid Parabolic Trough and Photovoltaic Solar Systems," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
  33. Güven, Aykut Fatih & Yörükeren, Nuran & Samy, Mohamed Mahmoud, 2022. "Design optimization of a stand-alone green energy system of university campus based on Jaya-Harmony Search and Ant Colony Optimization algorithms approaches," Energy, Elsevier, vol. 253(C).
  34. Obi, Manasseh & Jensen, S.M. & Ferris, Jennifer B. & Bass, Robert B., 2017. "Calculation of levelized costs of electricity for various electrical energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 908-920.
  35. Simsek, Yeliz & Mata-Torres, Carlos & Guzmán, Amador M. & Cardemil, Jose M. & Escobar, Rodrigo, 2018. "Sensitivity and effectiveness analysis of incentives for concentrated solar power projects in Chile," Renewable Energy, Elsevier, vol. 129(PA), pages 214-224.
  36. Kim, Hansung & Lee, Hwarang & Koo, Yoonmo & Choi, Dong Gu, 2020. "Comparative analysis of iterative approaches for incorporating learning-by-doing into the energy system models," Energy, Elsevier, vol. 197(C).
  37. Yu, Yanghao & Du, Ershun & Chen, Zhichao & Su, Yibo & Zhang, Xianfeng & Yang, Hongbin & Wang, Peng & Zhang, Ning, 2022. "Optimal portfolio of a 100% renewable energy generation base supported by concentrating solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
  38. Tazi, Nacef & Safaei, Fatemeh & Hnaien, Faicel, 2022. "Assessment of the levelized cost of energy using a stochastic model," Energy, Elsevier, vol. 238(PB).
  39. Mussard, Maxime, 2017. "Solar energy under cold climatic conditions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 733-745.
  40. Shakeel, Mohammad Raghib & Mokheimer, Esmail M.A., 2022. "A techno-economic evaluation of utility scale solar power generation," Energy, Elsevier, vol. 261(PA).
  41. Bayo-Besteiro, S. & de la Torre, L. & Costoya, X. & Gómez-Gesteira, M. & Pérez-Alarcón, A. & deCastro, M. & Añel, J.A., 2023. "Photovoltaic power resource at the Atacama Desert under climate change," Renewable Energy, Elsevier, vol. 216(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.