IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v47y2012i1p83-96.html
   My bibliography  Save this item

Preliminary determination of optimal size for renewable energy resources in buildings using RETScreen

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Azraff Bin Rozmi, Mohd Daniel & Thirunavukkarasu, Gokul Sidarth & Jamei, Elmira & Seyedmahmoudian, Mehdi & Mekhilef, Saad & Stojcevski, Alex & Horan, Ben, 2019. "Role of immersive visualization tools in renewable energy system development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
  2. Hillary Iruka Elegeonye & Abdulhameed Babatunde Owolabi & Olayinka Soledayo Ohunakin & Abdulfatai Olatunji Yakub & Abdullahi Yahaya & Noel Ngando Same & Dongjun Suh & Jeung-Soo Huh, 2023. "Techno-Economic Optimization of Mini-Grid Systems in Nigeria: A Case Study of a PV–Battery–Diesel Hybrid System," Energies, MDPI, vol. 16(12), pages 1-21, June.
  3. Ogunmodede, Oluwaseun & Anderson, Kate & Cutler, Dylan & Newman, Alexandra, 2021. "Optimizing design and dispatch of a renewable energy system," Applied Energy, Elsevier, vol. 287(C).
  4. Charani Shandiz, Saeid & Rismanchi, Behzad & Foliente, Greg, 2021. "Energy master planning for net-zero emission communities: State of the art and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
  5. Rabbani, Rabab & Zeeshan, Muhammad, 2022. "Impact of policy changes on financial viability of wind power plants in Pakistan," Renewable Energy, Elsevier, vol. 193(C), pages 789-806.
  6. Pan, Yu & Liu, Liuchen & Zhu, Tong & Zhang, Tao & Zhang, Junying, 2017. "Feasibility analysis on distributed energy system of Chongming County based on RETScreen software," Energy, Elsevier, vol. 130(C), pages 298-306.
  7. Caballero, F. & Sauma, E. & Yanine, F., 2013. "Business optimal design of a grid-connected hybrid PV (photovoltaic)-wind energy system without energy storage for an Easter Island's block," Energy, Elsevier, vol. 61(C), pages 248-261.
  8. Sharafi, Masoud & ElMekkawy, Tarek Y. & Bibeau, Eric L., 2015. "Optimal design of hybrid renewable energy systems in buildings with low to high renewable energy ratio," Renewable Energy, Elsevier, vol. 83(C), pages 1026-1042.
  9. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2015. "Study of technical, economical and environmental viability of ground source heat pump system for Himalayan cities of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 452-462.
  10. Căruțașiu Mihail-Bogdan & Ionescu Constantin & Necula Horia, 2017. "Optimal technical and economic strategy for retrofitting residential buildings in Romania," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 11(1), pages 146-156, July.
  11. Leif Hanrahan, Brian & Lightbody, Gordon & Staudt, Lawrence & G. Leahy, Paul, 2014. "A powerful visualization technique for electricity supply and demand at industrial sites with combined heat and power and wind generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 860-869.
  12. Cristofari, C. & Carutasiu, M.B. & Canaletti, J.L. & Norvaišienė, R. & Motte, F. & Notton, G., 2019. "Building integration of solar thermal systems-example of a refurbishment of a church rectory," Renewable Energy, Elsevier, vol. 137(C), pages 67-81.
  13. Martínez-Gordón, R. & Morales-España, G. & Sijm, J. & Faaij, A.P.C., 2021. "A review of the role of spatial resolution in energy systems modelling: Lessons learned and applicability to the North Sea region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
  14. Mariarosa Argentiero & Pasquale Marcello Falcone, 2020. "The Role of Earth Observation Satellites in Maximizing Renewable Energy Production: Case Studies Analysis for Renewable Power Plants," Sustainability, MDPI, vol. 12(5), pages 1-19, March.
  15. Retkowski, Waldemar & Thöming, Jorg, 2014. "Thermoeconomic optimization of vertical ground-source heat pump systems through nonlinear integer programming," Applied Energy, Elsevier, vol. 114(C), pages 492-503.
  16. Bornatico, Raffaele & Hüssy, Jonathan & Witzig, Andreas & Guzzella, Lino, 2013. "Surrogate modeling for the fast optimization of energy systems," Energy, Elsevier, vol. 57(C), pages 653-662.
  17. Bustos, F. & Toledo, A. & Contreras, J. & Fuentes, A., 2016. "Sensitivity analysis of a photovoltaic solar plant in Chile," Renewable Energy, Elsevier, vol. 87(P1), pages 145-153.
  18. Shabir Ahmad & Israr Ullah & Faisal Jamil & DoHyeun Kim, 2020. "Toward the Optimal Operation of Hybrid Renewable Energy Resources in Microgrids," Energies, MDPI, vol. 13(20), pages 1-19, October.
  19. Gabriele Battista & Emanuele de Lieto Vollaro & Andrea Vallati & Roberto de Lieto Vollaro, 2023. "Technical–Financial Feasibility Study of a Micro-Cogeneration System in the Buildings in Italy," Energies, MDPI, vol. 16(14), pages 1-15, July.
  20. Ijaz Ahmed & Alveena Irshad & Sarah Zafar & Basim Ali Khan & Muhammad Raza & Pahgunda Roheela Ali, 2023. "The role of environmental initiatives and green value co-creation as mediators: promoting corporate entrepreneurship and green innovation," SN Business & Economics, Springer, vol. 3(4), pages 1-22, April.
  21. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
  22. Zandi, M. & Bahrami, M. & Eslami, S. & Gavagsaz-Ghoachani, R. & Payman, A. & Phattanasak, M. & Nahid-Mobarakeh, B. & Pierfederici, S., 2017. "Evaluation and comparison of economic policies to increase distributed generation capacity in the Iranian household consumption sector using photovoltaic systems and RETScreen software," Renewable Energy, Elsevier, vol. 107(C), pages 215-222.
  23. Jiyeon Kim & Eui-Jong Kim, 2016. "Simplified Method of Optimal Sizing of a Renewable Energy Hybrid System for Schools," Sustainability, MDPI, vol. 8(11), pages 1-16, November.
  24. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
  25. Kim, Byungil & Kim, Changyoon, 2018. "Estimating the effect of module failures on the gross generation of a photovoltaic system using agent-based modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1019-1024.
  26. Youssef Kassem & Hüseyin Gökçekuş & Ali Güvensoy, 2021. "Techno-Economic Feasibility of Grid-Connected Solar PV System at Near East University Hospital, Northern Cyprus," Energies, MDPI, vol. 14(22), pages 1-27, November.
  27. Olabomi, RasaqAdekunle & Jaafar, A. Bakar & Musa, Md Nor & Sarip, Shamsul & Ariffin, Azrin, 2017. "Techno-economic analysis of innovative production and application of solar thermal chilled water for agricultural soil cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 215-224.
  28. Li, Chong & Zhou, Dequn & Zheng, Yuan, 2018. "Techno-economic comparative study of grid-connected PV power systems in five climate zones, China," Energy, Elsevier, vol. 165(PB), pages 1352-1369.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.