IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v44y2012icp464-468.html
   My bibliography  Save this item

Climate change mitigation and electrification

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ruhnau, Oliver & Bannik, Sergej & Otten, Sydney & Praktiknjo, Aaron & Robinius, Martin, 2019. "Direct or indirect electrification? A review of heat generation and road transport decarbonisation scenarios for Germany 2050," Energy, Elsevier, vol. 166(C), pages 989-999.
  2. Adrien Vogt‐Schilb & Stephane Hallegatte, 2017. "Climate policies and nationally determined contributions: reconciling the needed ambition with the political economy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(6), November.
  3. Santillán Vera, Mónica & García Manrique, Lilia & Rodríguez Peña, Isabel & De La Vega Navarro, Angel, 2023. "Drivers of electricity GHG emissions and the role of natural gas in mexican energy transition," Energy Policy, Elsevier, vol. 173(C).
  4. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
  5. Fernando Martins & Pedro Moura & Aníbal T. de Almeida, 2022. "The Role of Electrification in the Decarbonization of the Energy Sector in Portugal," Energies, MDPI, vol. 15(5), pages 1-35, February.
  6. Zbigniew Bohdanowicz & Beata Łopaciuk-Gonczaryk & Jarosław Kowalski & Cezary Biele, 2021. "Households’ Electrical Energy Conservation and Management: An Ecological Break-Through, or the Same Old Consumption-Growth Path?," Energies, MDPI, vol. 14(20), pages 1-21, October.
  7. Olaia Eguiarte & Antonio Garrido-Marijuán & Pablo de Agustín-Camacho & Luis del Portillo & Ander Romero-Amorrortu, 2020. "Energy, Environmental and Economic Analysis of Air-to-Air Heat Pumps as an Alternative to Heating Electrification in Europe," Energies, MDPI, vol. 13(15), pages 1-18, August.
  8. Volker Krey, 2014. "Global energy-climate scenarios and models: a review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 363-383, July.
  9. Andrej Guminski & Felix Böing & Alexander Murmann & Serafin von Roon, 2019. "System effects of high demand‐side electrification rates: A scenario analysis for Germany in 2030," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(2), March.
  10. Adrien Vogt‐Schilb & Stephane Hallegatte, 2017. "Climate policies and nationally determined contributions: reconciling the needed ambition with the political economy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(6), November.
  11. Lin, Boqiang & Li, Zheng, 2020. "Is more use of electricity leading to less carbon emission growth? An analysis with a panel threshold model," Energy Policy, Elsevier, vol. 137(C).
  12. David McCollum & Volker Krey & Peter Kolp & Yu Nagai & Keywan Riahi, 2014. "Transport electrification: A key element for energy system transformation and climate stabilization," Climatic Change, Springer, vol. 123(3), pages 651-664, April.
  13. Moret, Stefano & Babonneau, Frédéric & Bierlaire, Michel & Maréchal, François, 2020. "Overcapacity in European power systems: Analysis and robust optimization approach," Applied Energy, Elsevier, vol. 259(C).
  14. Martin Rüdisüli & Sinan L. Teske & Urs Elber, 2019. "Impacts of an Increased Substitution of Fossil Energy Carriers with Electricity-Based Technologies on the Swiss Electricity System," Energies, MDPI, vol. 12(12), pages 1-38, June.
  15. Kelly, J. Andrew & Fu, Miao & Clinch, J. Peter, 2016. "Residential home heating: The potential for air source heat pump technologies as an alternative to solid and liquid fuels," Energy Policy, Elsevier, vol. 98(C), pages 431-442.
  16. Chen, Chao & Lu, Yangsiyu & Banares-Alcantara, Rene, 2019. "Direct and indirect electrification of chemical industry using methanol production as a case study," Applied Energy, Elsevier, vol. 243(C), pages 71-90.
  17. Julianne DeAngelo & Inês Azevedo & John Bistline & Leon Clarke & Gunnar Luderer & Edward Byers & Steven J. Davis, 2021. "Energy systems in scenarios at net-zero CO2 emissions," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  18. Julien Lancelot Michellod & Declan Kuch & Christian Winzer & Martin K. Patel & Selin Yilmaz, 2022. "Building Social License for Automated Demand-Side Management—Case Study Research in the Swiss Residential Sector," Energies, MDPI, vol. 15(20), pages 1-25, October.
  19. Gunnar Luderer & Zoi Vrontisi & Christoph Bertram & Oreane Y. Edelenbosch & Robert C. Pietzcker & Joeri Rogelj & Harmen Sytze Boer & Laurent Drouet & Johannes Emmerling & Oliver Fricko & Shinichiro Fu, 2018. "Residual fossil CO2 emissions in 1.5–2 °C pathways," Nature Climate Change, Nature, vol. 8(7), pages 626-633, July.
  20. Müller, Jonas & Trutnevyte, Evelina, 2020. "Spatial projections of solar PV installations at subnational level: Accuracy testing of regression models," Applied Energy, Elsevier, vol. 265(C).
  21. Bernhard Faessler & Aleksander Bogunović Jakobsen, 2021. "Autonomous Operation of Stationary Battery Energy Storage Systems—Optimal Storage Design and Economic Potential," Energies, MDPI, vol. 14(5), pages 1-12, March.
  22. Jean C. Bikomeye & Caitlin S. Rublee & Kirsten M. M. Beyer, 2021. "Positive Externalities of Climate Change Mitigation and Adaptation for Human Health: A Review and Conceptual Framework for Public Health Research," IJERPH, MDPI, vol. 18(5), pages 1-29, March.
  23. Thomas Sattich & Inga Ydersbond & Daniel Scholten,, 2015. "Can EU’s Decarbonisation Agenda Break the State-Company Axis in the Power Sector?," Working Papers 2015.51, Fondazione Eni Enrico Mattei.
  24. Yecid Muñoz-Maldonado & Edgar Correa-Quintana & Adalberto Ospino-Castro, 2023. "Electrification of Industrial Processes as an Alternative to Replace Conventional Thermal Power Sources," Energies, MDPI, vol. 16(19), pages 1-20, September.
  25. Kockel, Christina & Nolting, Lars & Priesmann, Jan & Praktiknjo, Aaron, 2022. "Does renewable electricity supply match with energy demand? – A spatio-temporal analysis for the German case," Applied Energy, Elsevier, vol. 308(C).
  26. Sakmani, Ahmad Safwan & Lam, Wei-Haur & Hashim, Roslan & Chong, Heap-Yih, 2013. "Site selection for tidal turbine installation in the Strait of Malacca," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 590-602.
  27. Mehdizadeh, Milad & Nordfjaern, Trond & Klöckner, Christian A., 2023. "Estimating financial compensation and minimum guaranteed charge for vehicle-to-grid technology," Energy Policy, Elsevier, vol. 180(C).
  28. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Multi-objective optimization of energy arbitrage in community energy storage systems using different battery technologies," Applied Energy, Elsevier, vol. 239(C), pages 356-372.
  29. Tian, Xuelin & An, Chunjiang & Chen, Zhikun, 2023. "The role of clean energy in achieving decarbonization of electricity generation, transportation, and heating sectors by 2050: A meta-analysis review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
  30. Fortes, Patrícia & Simoes, Sofia G. & Gouveia, João Pedro & Seixas, Júlia, 2019. "Electricity, the silver bullet for the deep decarbonisation of the energy system? Cost-effectiveness analysis for Portugal," Applied Energy, Elsevier, vol. 237(C), pages 292-303.
  31. Sofia, Daniele & Gioiella, Filomena & Lotrecchiano, Nicoletta & Giuliano, Aristide, 2020. "Cost-benefit analysis to support decarbonization scenario for 2030: A case study in Italy," Energy Policy, Elsevier, vol. 137(C).
  32. Hiromi Yamamoto & Masahiro Sugiyama & Junichi Tsutsui, 2014. "Role of end-use technologies in long-term GHG reduction scenarios developed with the BET model," Climatic Change, Springer, vol. 123(3), pages 583-596, April.
  33. Hepburn, Cameron & Pfeiffer, Alexander & Vogt-Schilb, Adrien & J. Tulloch, Daniel, 2018. "Dead on arrival? Implicit stranded assets in leading IAM scenarios," INET Oxford Working Papers 2018-08, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
  34. Perillo, Frederico & Pereira da Silva, Patrícia & Cerqueira, Pedro A., 2022. "Decoupling efficiency from electricity intensity: An empirical assessment in the EU," Energy Policy, Elsevier, vol. 169(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.