IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v39y2011i5p2646-2655.html
   My bibliography  Save this item

Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yuan, Xiangzhou & Wang, Junyao & Deng, Shuai & Suvarna, Manu & Wang, Xiaonan & Zhang, Wei & Hamilton, Sara Triana & Alahmed, Ammar & Jamal, Aqil & Park, Ah-Hyung Alissa & Bi, Xiaotao & Ok, Yong Sik, 2022. "Recent advancements in sustainable upcycling of solid waste into porous carbons for carbon dioxide capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
  2. Alexandre Tisserant & Francesco Cherubini, 2019. "Potentials, Limitations, Co-Benefits, and Trade-Offs of Biochar Applications to Soils for Climate Change Mitigation," Land, MDPI, vol. 8(12), pages 1-34, November.
  3. Field, John L. & Tanger, Paul & Shackley, Simon J. & Haefele, Stephan M., 2016. "Agricultural residue gasification for low-cost, low-carbon decentralized power: An empirical case study in Cambodia," Applied Energy, Elsevier, vol. 177(C), pages 612-624.
  4. James E. McDevitt & Elisabeth R. Langer & Alan C. Leckie, 2013. "Community Engagement and Environmental Life Cycle Assessment of Kaikōura’s Biosolid Reuse Options," Sustainability, MDPI, vol. 5(1), pages 1-14, January.
  5. Jiang, Zhixiang & Dai, Yanhui & Luo, Xianxiang & Liu, Guocheng & Wang, Hefang & Zheng, Hao & Wang, Zhenyu, 2017. "Assessment of bioenergy development potential and its environmental impact for rural household energy consumption: A case study in Shandong, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1153-1161.
  6. Alhashimi, Hashim A. & Aktas, Can B., 2017. "Life cycle environmental and economic performance of biochar compared with activated carbon: A meta-analysis," Resources, Conservation & Recycling, Elsevier, vol. 118(C), pages 13-26.
  7. Yang, Qing & Han, Fei & Chen, Yingquan & Yang, Haiping & Chen, Hanping, 2016. "Greenhouse gas emissions of a biomass-based pyrolysis plant in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1580-1590.
  8. Sara Rajabi Hamedani & Tom Kuppens & Robert Malina & Enrico Bocci & Andrea Colantoni & Mauro Villarini, 2019. "Life Cycle Assessment and Environmental Valuation of Biochar Production: Two Case Studies in Belgium," Energies, MDPI, vol. 12(11), pages 1-21, June.
  9. Roy, Poritosh & Dias, Goretty, 2017. "Prospects for pyrolysis technologies in the bioenergy sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 59-69.
  10. Ericsson, Niclas & Nordberg, Åke & Sundberg, Cecilia & Ahlgren, Serina & Hansson, Per-Anders, 2014. "Climate impact and energy efficiency from electricity generation through anaerobic digestion or direct combustion of short rotation coppice willow," Applied Energy, Elsevier, vol. 132(C), pages 86-98.
  11. Anand, Abhijeet & Kumar, Vivek & Kaushal, Priyanka, 2022. "Biochar and its twin benefits: Crop residue management and climate change mitigation in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
  12. Anja Hansen & Jörn Budde & Yusuf Nadi Karatay & Annette Prochnow, 2016. "CUDe —Carbon Utilization Degree as an Indicator for Sustainable Biomass Use," Sustainability, MDPI, vol. 8(10), pages 1-17, October.
  13. Kung, Chih-Chun & McCarl, Bruce A. & Cao, Xiaoyong, 2013. "Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan," Energy Policy, Elsevier, vol. 60(C), pages 317-323.
  14. Simone Marzeddu & Andrea Cappelli & Andrea Ambrosio & María Alejandra Décima & Paolo Viotti & Maria Rosaria Boni, 2021. "A Life Cycle Assessment of an Energy-Biochar Chain Involving a Gasification Plant in Italy," Land, MDPI, vol. 10(11), pages 1-29, November.
  15. Mohammadi, Ali & Cowie, Annette L. & Cacho, Oscar & Kristiansen, Paul & Anh Mai, Thi Lan & Joseph, Stephen, 2017. "Biochar addition in rice farming systems: Economic and energy benefits," Energy, Elsevier, vol. 140(P1), pages 415-425.
  16. Shackley, Simon & Carter, Sarah & Knowles, Tony & Middelink, Erik & Haefele, Stephan & Sohi, Saran & Cross, Andrew & Haszeldine, Stuart, 2012. "Sustainable gasification–biochar systems? A case-study of rice-husk gasification in Cambodia, Part I: Context, chemical properties, environmental and health and safety issues," Energy Policy, Elsevier, vol. 42(C), pages 49-58.
  17. Song, Biao & Almatrafi, Eydhah & Tan, Xiaofei & Luo, Songhao & Xiong, Weiping & Zhou, Chengyun & Qin, Meng & Liu, Yang & Cheng, Min & Zeng, Guangming & Gong, Jilai, 2022. "Biochar-based agricultural soil management: An application-dependent strategy for contributing to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
  18. Shackley, Simon & Carter, Sarah & Knowles, Tony & Middelink, Erik & Haefele, Stephan & Haszeldine, Stuart, 2012. "Sustainable gasification–biochar systems? A case-study of rice-husk gasification in Cambodia, Part II: Field trial results, carbon abatement, economic assessment and conclusions," Energy Policy, Elsevier, vol. 41(C), pages 618-623.
  19. Chiappero, Marco & Norouzi, Omid & Hu, Mingyu & Demichelis, Francesca & Berruti, Franco & Di Maria, Francesco & Mašek, Ondřej & Fiore, Silvia, 2020. "Review of biochar role as additive in anaerobic digestion processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
  20. Mohsin Raza & Abrar Inayat & Ashfaq Ahmed & Farrukh Jamil & Chaouki Ghenai & Salman R. Naqvi & Abdallah Shanableh & Muhammad Ayoub & Ammara Waris & Young-Kwon Park, 2021. "Progress of the Pyrolyzer Reactors and Advanced Technologies for Biomass Pyrolysis Processing," Sustainability, MDPI, vol. 13(19), pages 1-42, October.
  21. Isabel Teichmann, 2014. "Technical Greenhouse-Gas Mitigation Potentials of Biochar Soil Incorporation in Germany," Discussion Papers of DIW Berlin 1406, DIW Berlin, German Institute for Economic Research.
  22. Lauri Leppäkoski & Miika P. Marttila & Ville Uusitalo & Jarkko Levänen & Vilma Halonen & Mirja H. Mikkilä, 2021. "Assessing the Carbon Footprint of Biochar from Willow Grown on Marginal Lands in Finland," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
  23. Polina Kuryntseva & Kamalya Karamova & Polina Galitskaya & Svetlana Selivanovskaya & Gennady Evtugyn, 2023. "Biochar Functions in Soil Depending on Feedstock and Pyrolyzation Properties with Particular Emphasis on Biological Properties," Agriculture, MDPI, vol. 13(10), pages 1-39, October.
  24. Isabel Teichmann, 2015. "An Economic Assessment of Soil Carbon Sequestration with Biochar in Germany," Discussion Papers of DIW Berlin 1476, DIW Berlin, German Institute for Economic Research.
  25. Song, Guobao & Song, Jie & Zhang, Shushen, 2016. "Modelling the policies of optimal straw use for maximum mitigation of climate change in China from a system perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 789-810.
  26. Yang, Qiushuang & Mašek, Ondřej & Zhao, Ling & Nan, Hongyan & Yu, Shitong & Yin, Jianxiang & Li, Zhaopeng & Cao, Xinde, 2021. "Country-level potential of carbon sequestration and environmental benefits by utilizing crop residues for biochar implementation," Applied Energy, Elsevier, vol. 282(PB).
  27. Thakkar, Jignesh & Kumar, Amit & Ghatora, Sonia & Canter, Christina, 2016. "Energy balance and greenhouse gas emissions from the production and sequestration of charcoal from agricultural residues," Renewable Energy, Elsevier, vol. 94(C), pages 558-567.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.