IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v39y2011i10p6280-6290.html
   My bibliography  Save this item

The potential impacts of grid-connected distributed generation and how to address them: A review of technical and non-technical factors

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Stringer, Naomi & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2021. "Fair consumer outcomes in the balance: Data driven analysis of distributed PV curtailment," Renewable Energy, Elsevier, vol. 173(C), pages 972-986.
  2. Jean-Henry Ferrasse & Nandeeta Neerunjun & Hubert Stahn, 2021. "Managing intermittency in the electricity market," Working Papers halshs-03154612, HAL.
  3. Vahl, Fabrício Peter & Rüther, Ricardo & Casarotto Filho, Nelson, 2013. "The influence of distributed generation penetration levels on energy markets," Energy Policy, Elsevier, vol. 62(C), pages 226-235.
  4. Stringer, Naomi & Haghdadi, Navid & Bruce, Anna & Riesz, Jenny. & MacGill, Iain, 2020. "Observed behavior of distributed photovoltaic systems during major voltage disturbances and implications for power system security," Applied Energy, Elsevier, vol. 260(C).
  5. Oliva H., Sebastian & MacGill, Iain & Passey, Rob, 2016. "Assessing the short-term revenue impacts of residential PV systems on electricity customers, retailers and network service providers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1494-1505.
  6. José de Castro Vieira, Samuel & Tapia Carpio, Lucio Guido, 2020. "The economic impact on residential fees associated with the expansion of grid-connected solar photovoltaic generators in Brazil," Renewable Energy, Elsevier, vol. 159(C), pages 1084-1098.
  7. Xiangming Wu & Chenguang Yang & Guang Han & Zisong Ye & Yinlong Hu, 2022. "Energy Loss Reduction for Distribution Networks with Energy Storage Systems via Loss Sensitive Factor Method," Energies, MDPI, vol. 15(15), pages 1-15, July.
  8. Anaya, Karim L. & Pollitt, Michael G., 2015. "Integrating distributed generation: Regulation and trends in three leading countries," Energy Policy, Elsevier, vol. 85(C), pages 475-486.
  9. Georgopoulou, E. & Mirasgedis, S. & Sarafidis, Y. & Gakis, N. & Hontou, V. & Lalas, D.P. & Steiner, D. & Tuerk, A. & Fruhmann, C. & Pucker, J., 2015. "Lessons learnt from a sectoral analysis of greenhouse gas mitigation potential in the Balkans," Energy, Elsevier, vol. 92(P3), pages 577-591.
  10. Costa, Vinicius B.F. & Capaz, Rafael S. & Silva, Patrícia F. & Doyle, Gabriel & Aquila, Giancarlo & Coelho, Éden O. & de Lorenci, Eliane & Pereira, Lígia C. & Maciel, Letícia B. & Balestrassi, Pedro P, 2022. "Socioeconomic and environmental consequences of a new law for regulating distributed generation in Brazil: A holistic assessment," Energy Policy, Elsevier, vol. 169(C).
  11. Karatepe, Engin & Ugranlı, Faruk & Hiyama, Takashi, 2015. "Comparison of single- and multiple-distributed generation concepts in terms of power loss, voltage profile, and line flows under uncertain scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 317-327.
  12. El Halabi, N. & García-Gracia, M. & Comech, M.P. & Oyarbide, E., 2012. "Distributed generation network design considering ground capacitive couplings," Renewable Energy, Elsevier, vol. 45(C), pages 119-127.
  13. Lim, Yun Seng & Tang, Jun Huat, 2014. "Experimental study on flicker emissions by photovoltaic systems on highly cloudy region: A case study in Malaysia," Renewable Energy, Elsevier, vol. 64(C), pages 61-70.
  14. Gonzalez, Arnau & Riba, Jordi-Roger & Esteban, Bernat & Rius, Antoni, 2018. "Environmental and cost optimal design of a biomass–Wind–PV electricity generation system," Renewable Energy, Elsevier, vol. 126(C), pages 420-430.
  15. Anuta, Oghenetejiri Harold & Taylor, Phil & Jones, Darren & McEntee, Tony & Wade, Neal, 2014. "An international review of the implications of regulatory and electricity market structures on the emergence of grid scale electricity storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 489-508.
  16. Shuai Wang & Yao Li & Junjun Jia, 2022. "How to promote sustainable adoption of residential distributed photovoltaic generation in China? An employment of incentive and punitive policies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(2), pages 1-26, February.
  17. Jarnut, Marcin & Wermiński, Szymon & Waśkowicz, Bartosz, 2017. "Comparative analysis of selected energy storage technologies for prosumer-owned microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 925-937.
  18. Protopapadaki, Christina & Saelens, Dirk, 2017. "Heat pump and PV impact on residential low-voltage distribution grids as a function of building and district properties," Applied Energy, Elsevier, vol. 192(C), pages 268-281.
  19. Freitas, Sara & Santos, Teresa & Brito, Miguel C., 2018. "Impact of large scale PV deployment in the sizing of urban distribution transformers," Renewable Energy, Elsevier, vol. 119(C), pages 767-776.
  20. Poppen, Silvia, 2014. "Auswirkungen dezentraler Erzeugungsanlagen auf das Stromversorgungssystem: Ausgestaltungsmöglichkeiten der Bereitstellung neuer Erzeugungsanlagen," Arbeitspapiere 146, University of Münster, Institute for Cooperatives.
  21. Yu, Moduo & Huang, Wentao & Tai, Nengling & Zheng, Xiaodong & Wu, Pan & Chen, Weidong, 2018. "Transient stability mechanism of grid-connected inverter-interfaced distributed generators using droop control strategy," Applied Energy, Elsevier, vol. 210(C), pages 737-747.
  22. Kalkbrenner, Bernhard J. & Yonezawa, Koichi & Roosen, Jutta, 2017. "Consumer preferences for electricity tariffs: Does proximity matter?," Energy Policy, Elsevier, vol. 107(C), pages 413-424.
  23. Anaya, Karim L. & Pollitt, Michael G., 2014. "Experience with smarter commercial arrangements for distributed wind generation," Energy Policy, Elsevier, vol. 71(C), pages 52-62.
  24. Ferrasse, Jean-Henry & Neerunjun, Nandeeta & Stahn, Hubert, 2022. "Intermittency and electricity retailing: An incomplete market approach," Mathematical Social Sciences, Elsevier, vol. 120(C), pages 24-36.
  25. Toscano, G. & Duca, D. & Foppa Pedretti, E. & Pizzi, A. & Rossini, G. & Mengarelli, C. & Mancini, M., 2016. "Investigation of woodchip quality: Relationship between the most important chemical and physical parameters," Energy, Elsevier, vol. 106(C), pages 38-44.
  26. Jamal, Taskin & Urmee, Tania & Calais, Martina & Shafiullah, GM & Carter, Craig, 2017. "Technical challenges of PV deployment into remote Australian electricity networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1309-1325.
  27. Anaya, Karim L. & Pollitt, Michael G., 2017. "Going smarter in the connection of distributed generation," Energy Policy, Elsevier, vol. 105(C), pages 608-617.
  28. Lonergan, Katherine Emma & Sansavini, Giovanni, 2022. "Business structure of electricity distribution system operator and effect on solar photovoltaic uptake: An empirical case study for Switzerland," Energy Policy, Elsevier, vol. 160(C).
  29. Boon, Frank Pieter & Dieperink, Carel, 2014. "Local civil society based renewable energy organisations in the Netherlands: Exploring the factors that stimulate their emergence and development," Energy Policy, Elsevier, vol. 69(C), pages 297-307.
  30. Kalkbrenner, Bernhard J., 2019. "Residential vs. community battery storage systems – Consumer preferences in Germany," Energy Policy, Elsevier, vol. 129(C), pages 1355-1363.
  31. Darragh Carr & Murray Thomson, 2022. "Non-Technical Electricity Losses," Energies, MDPI, vol. 15(6), pages 1-14, March.
  32. Arnau González & Jordi-Roger Riba & Antoni Rius, 2015. "Optimal Sizing of a Hybrid Grid-Connected Photovoltaic–Wind–Biomass Power System," Sustainability, MDPI, vol. 7(9), pages 1-20, September.
  33. Anaya, Karim L. & Pollitt, Michael G., 2015. "Options for allocating and releasing distribution system capacity: Deciding between interruptible connections and firm DG connections," Applied Energy, Elsevier, vol. 144(C), pages 96-105.
  34. Reddy, K.S. & Kumar, Madhusudan & Mallick, T.K. & Sharon, H. & Lokeswaran, S., 2014. "A review of Integration, Control, Communication and Metering (ICCM) of renewable energy based smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 180-192.
  35. González, Arnau & Riba, Jordi-Roger & Puig, Rita & Navarro, Pere, 2015. "Review of micro- and small-scale technologies to produce electricity and heat from Mediterranean forests׳ wood chips," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 143-155.
  36. Kumar, Sandip Ravi & Gafaro, Francisco & Daka, Andrew & Raturi, Atul, 2017. "Modelling and analysis of grid integration for high shares of solar PV in small isolated systems – A case of Kiribati," Renewable Energy, Elsevier, vol. 108(C), pages 589-597.
  37. Aksel Botne Sandberg & Eirik Klementsen & Gerrit Muller & Adrian De Andres & Jéromine Maillet, 2016. "Critical Factors Influencing Viability of Wave Energy Converters in Off-Grid Luxury Resorts and Small Utilities," Sustainability, MDPI, vol. 8(12), pages 1-22, December.
  38. Hugo Morais & Tiago Pinto & Zita Vale, 2020. "Adjacent Markets Influence Over Electricity Trading—Iberian Benchmark Study," Energies, MDPI, vol. 13(11), pages 1-22, June.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.