IDEAS home Printed from https://ideas.repec.org/r/eee/eneeco/v43y2014icp178-184.html
   My bibliography  Save this item

Building and household X-factors and energy consumption at the residential sector

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Xinkuo Xu & Liyan Han, 2017. "Diverse Effects of Consumer Credit on Household Carbon Emissions at Quantiles: Evidence from Urban China," Sustainability, MDPI, vol. 9(9), pages 1-25, September.
  2. Dorothée Charlier & Bérangère Legendre, 2016. "Fuel Poverty: A Composite Index Approach," Policy Papers 2016.06, FAERE - French Association of Environmental and Resource Economists.
  3. Belaïd, Fateh & Youssef, Adel Ben & Lazaric, Nathalie, 2020. "Scrutinizing the direct rebound effect for French households using quantile regression and data from an original survey," Ecological Economics, Elsevier, vol. 176(C).
  4. Yu, Lu & Wu, Shuang & Jiang, Lu & Ding, Bowenpeng & Shi, Xiaonan, 2022. "Do more efficient buildings lead to lower household energy consumption for cooling? Evidence from Guangzhou, China," Energy Policy, Elsevier, vol. 168(C).
  5. Belaïd, Fateh, 2017. "Untangling the complexity of the direct and indirect determinants of the residential energy consumption in France: Quantitative analysis using a structural equation modeling approach," Energy Policy, Elsevier, vol. 110(C), pages 246-256.
  6. Nitin Kumar Singh & Takuya Fukushima & Masaaki Nagahara, 2023. "Gradient Boosting Approach to Predict Energy-Saving Awareness of Households in Kitakyushu," Energies, MDPI, vol. 16(16), pages 1-10, August.
  7. Hansen, Anders Rhiger, 2018. "Heating homes: Understanding the impact of prices," Energy Policy, Elsevier, vol. 121(C), pages 138-151.
  8. Ana-María Martínez-Llorens & Paloma Taltavull de La Paz & Raul-Tomas Mora-Garcia, 2020. "Effect of The Physical Characteristics of a Dwelling on Energy Consumption and Emissions: The Case of Castellón And Valencia (Spain)," Sustainability, MDPI, vol. 12(22), pages 1-20, November.
  9. Estiri, Hossein & Zagheni, Emilio, 2018. "Evaluating the Age-Energy Consumption Profile in Residential Buildings," SocArXiv yqkva, Center for Open Science.
  10. Maria Cecilia P Moura & Steven J Smith & David B Belzer, 2015. "120 Years of U.S. Residential Housing Stock and Floor Space," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-18, August.
  11. Chen Xu & Yu Li & Xueting Jin & Liang Yuan & Hao Cheng, 2017. "A Real-Time Energy Consumption Simulation and Comparison of Buildings in Different Construction Years in the Olympic Central Area in Beijing," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
  12. Shijing Yang & Yikun Su & Wei Wang & Kaicheng Hua, 2019. "Research on Developers’ Green Procurement Behavior Based on the Theory of Planned Behavior," Sustainability, MDPI, vol. 11(10), pages 1-23, May.
  13. Rafael de Arce & Ramón Mahía, 2019. "Drivers of Electricity Poverty in Spanish Dwellings: A Quantile Regression Approach," Energies, MDPI, vol. 12(11), pages 1-18, May.
  14. van den Brom, Paula & Hansen, Anders Rhiger & Gram-Hanssen, Kirsten & Meijer, Arjen & Visscher, Henk, 2019. "Variances in residential heating consumption – Importance of building characteristics and occupants analysed by movers and stayers," Applied Energy, Elsevier, vol. 250(C), pages 713-728.
  15. Schröder, Carsten & Rehdanz, Katrin & Narita, Daiju & Okubo, Toshihiro, 2015. "The decline in average family size and its implications for the average benefits of within‐household sharing," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 67(3), pages 760-780.
  16. Wang, Endong, 2015. "Benchmarking whole-building energy performance with multi-criteria technique for order preference by similarity to ideal solution using a selective objective-weighting approach," Applied Energy, Elsevier, vol. 146(C), pages 92-103.
  17. Anders Rhiger Hansen & Daniel Leiria & Hicham Johra & Anna Marszal-Pomianowska, 2022. "Who Produces the Peaks? Household Variation in Peak Energy Demand for Space Heating and Domestic Hot Water," Energies, MDPI, vol. 15(24), pages 1-23, December.
  18. Park, Jongmun & Yun, Sun-Jin, 2022. "Social determinants of residential electricity consumption in Korea: Findings from a spatial panel model," Energy, Elsevier, vol. 239(PE).
  19. Lu Jiang & Bowenpeng Ding & Xiaonan Shi & Chunhua Li & Yamei Chen, 2022. "Household Energy Consumption Patterns and Carbon Emissions for the Megacities—Evidence from Guangzhou, China," Energies, MDPI, vol. 15(8), pages 1-21, April.
  20. Franz Fuerst & Dimitra Kavarnou & Ramandeep Singh & Hassan Adan, 2020. "Determinants of energy consumption and exposure to energy price risk: a UK study [Determinanten des Energieverbrauchs und Energiepreisrisiko: Eine Studie aus Großbritannien]," Zeitschrift für Immobilienökonomie (German Journal of Real Estate Research), Springer;Gesellschaft für Immobilienwirtschaftliche Forschung e. V., vol. 6(1), pages 65-80, April.
  21. Belaïd, Fateh, 2016. "Understanding the spectrum of domestic energy consumption: Empirical evidence from France," Energy Policy, Elsevier, vol. 92(C), pages 220-233.
  22. Hamed Nabizadeh Rafsanjani & Changbum R. Ahn & Mahmoud Alahmad, 2015. "A Review of Approaches for Sensing, Understanding, and Improving Occupancy-Related Energy-Use Behaviors in Commercial Buildings," Energies, MDPI, vol. 8(10), pages 1-34, October.
  23. Sylwia Słupik & Joanna Kos-Łabędowicz & Joanna Trzęsiok, 2021. "Are You a Typical Energy Consumer? Socioeconomic Characteristics of Behavioural Segmentation Representatives of 8 European Countries," Energies, MDPI, vol. 14(19), pages 1-28, September.
  24. Overen Ochuko Kelvin & Meyer Leroy Edson & Makaka Golden, 2017. "Thermal, Economic and Environmental Analysis of a Low-Cost House in Alice, South Africa," Sustainability, MDPI, vol. 9(3), pages 1-20, March.
  25. Paloma Taltavull de La Paz & V. Raul Perez-Sanchez & Raul-Tomas Mora-Garcia & Juan-Carlos Perez-Sanchez, 2019. "Green Premium Evidence from Climatic Areas: A Case in Southern Europe, Alicante (Spain)," Sustainability, MDPI, vol. 11(3), pages 1-29, January.
  26. Estiri, Hossein, 2014. "Energy Planning in the Big Data Era: A Theme Study of the Residential Sector," EconStor Conference Papers 106936, ZBW - Leibniz Information Centre for Economics.
  27. Sylwia Słupik & Joanna Kos-Łabędowicz & Joanna Trzęsiok, 2021. "Energy-Related Behaviour of Consumers from the Silesia Province (Poland)—Towards a Low-Carbon Economy," Energies, MDPI, vol. 14(8), pages 1-23, April.
  28. Oh, Jeongyoon & Koo, Choongwan & Hong, Taehoon & Cha, Seung Hyun, 2018. "An integrated model for estimating the techno-economic performance of the distributed solar generation system on building façades: Focused on energy demand and supply," Applied Energy, Elsevier, vol. 228(C), pages 1071-1090.
  29. Jakučionytė-Skodienė, Miglė & Dagiliūtė, Renata & Liobikienė, Genovaitė, 2020. "Do general pro-environmental behaviour, attitude, and knowledge contribute to energy savings and climate change mitigation in the residential sector?," Energy, Elsevier, vol. 193(C).
  30. Romero-Jordán, Desiderio & del Río, Pablo, 2022. "Analysing the drivers of the efficiency of households in electricity consumption," Energy Policy, Elsevier, vol. 164(C).
  31. Talita Mariane Cristino & Antonio Faria Neto & Antonio Fernando Branco Costa, 2018. "Energy efficiency in buildings: analysis of scientific literature and identification of data analysis techniques from a bibliometric study," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1275-1326, March.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.