IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v86y2009i9p1365-1375.html
   My bibliography  Save this item

Applications of porous media combustion technology - A review

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  2. Wu, H. & Kim, Y.J. & Vandadi, V. & Park, C. & Kaviany, M. & Kwon, O.C., 2015. "Experiment on superadiabatic radiant burner with augmented preheating," Applied Energy, Elsevier, vol. 156(C), pages 390-397.
  3. He, Fang & Wang, Xiaodong & Wu, Dezhen, 2015. "Phase-change characteristics and thermal performance of form-stable n-alkanes/silica composite phase change materials fabricated by sodium silicate precursor," Renewable Energy, Elsevier, vol. 74(C), pages 689-698.
  4. Gentillon, Philippe & Singh, Siddharth & Lakshman, Suhas & Zhang, Zhaolun & Paduthol, Appu & Ekins-Daukes, N.J. & Chan, Qing N. & Taylor, Robert A., 2019. "A comprehensive experimental characterisation of a novel porous media combustion-based thermophotovoltaic system with controlled emission," Applied Energy, Elsevier, vol. 254(C).
  5. Toledo, Mario & Arriagada, Andrés & Ripoll, Nicolás & Salgansky, Eugene A. & Mujeebu, Muhammad Abdul, 2023. "Hydrogen and syngas production by hybrid filtration combustion: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
  6. Zangeneh, Vahid & Alipoor, Alireza, 2021. "Stability study of hydrogen-air flame in a conical porous burner," Energy, Elsevier, vol. 215(PB).
  7. Hong-Wei Shi & Hai-Peng Wang, 2023. "Research on Full Premixed Combustion and Emission Characteristics of Non-Electric Gas Boiler," Energies, MDPI, vol. 16(21), pages 1-28, November.
  8. Mujeebu, M. Abdul & Abdullah, M.Z. & Mohamad, A.A., 2011. "Development of energy efficient porous medium burners on surface and submerged combustion modes," Energy, Elsevier, vol. 36(8), pages 5132-5139.
  9. Abdul Mujeebu, Muhammad, 2016. "Hydrogen and syngas production by superadiabatic combustion – A review," Applied Energy, Elsevier, vol. 173(C), pages 210-224.
  10. Deb, Sunita & Muthukumar, P., 2021. "Development and performance assessment of LPG operated cluster Porous Radiant Burner for commercial cooking and industrial applications," Energy, Elsevier, vol. 219(C).
  11. Pan, J.F. & Wu, D. & Liu, Y.X. & Zhang, H.F. & Tang, A.K. & Xue, H., 2015. "Hydrogen/oxygen premixed combustion characteristics in micro porous media combustor," Applied Energy, Elsevier, vol. 160(C), pages 802-807.
  12. Hinrichs, Jörn & Felsmann, Daniel & Schweitzer-De Bortoli, Stefan & Tomczak, Heinz-Jörg & Pitsch, Heinz, 2018. "Numerical and experimental investigation of pollutant formation and emissions in a full-scale cylindrical heating unit of a condensing gas boiler," Applied Energy, Elsevier, vol. 229(C), pages 977-989.
  13. Zeng, Jimin & Liu, Lidong & Liang, Xiao & Chen, Shihe & Yuan, Jun, 2021. "Evaluating fuel consumption factor for energy conservation and carbon neutral on an industrial thermal power unit," Energy, Elsevier, vol. 232(C).
  14. Li, Q.Y. & Wang, L. & Ju, Y.L., 2011. "Analysis of flammability limits for the liquefaction process of oxygen-bearing coal-bed methane," Applied Energy, Elsevier, vol. 88(9), pages 2934-2939.
  15. Chen, Guan-Bang & Li, Yueh-Heng & Cheng, Tsarng-Sheng & Chao, Yei-Chin, 2013. "Chemical effect of hydrogen peroxide addition on characteristics of methane–air combustion," Energy, Elsevier, vol. 55(C), pages 564-570.
  16. Ismail, Ahmad Kamal & Abdullah, Mohd Zulkifly & Zubair, Mohammed & Ahmad, Zainal Arifin & Jamaludin, Abdul Rashid & Mustafa, Khairil Faizi & Abdullah, Mohamad Nazir, 2013. "Application of porous medium burner with micro cogeneration system," Energy, Elsevier, vol. 50(C), pages 131-142.
  17. Gentillon, Philippe & Southcott, Jake & Chan, Qing N. & Taylor, Robert A., 2018. "Stable flame limits for optimal radiant performance of porous media reactors for thermophotovoltaic applications using packed beds of alumina," Applied Energy, Elsevier, vol. 229(C), pages 736-744.
  18. Janvekar, Ayub Ahmed & Miskam, M.A. & Abas, Aizat & Ahmad, Zainal Arifin & Juntakan, T. & Abdullah, M.Z., 2017. "Effects of the preheat layer thickness on surface/submerged flame during porous media combustion of micro burner," Energy, Elsevier, vol. 122(C), pages 103-110.
  19. Marín, Pablo & Díez, Fernando V. & Ordóñez, Salvador, 2014. "A new method for controlling the ignition state of a regenerative combustor using a heat storage device," Applied Energy, Elsevier, vol. 116(C), pages 322-332.
  20. Ling, Zhongqian & Lu, Ling & Zeng, Xianyang & Kuang, Min & Ling, Bo & Gao, Chuanji & Zhou, Chao, 2023. "Ethylene combustion performance with varying the N2 content in a porous burner," Energy, Elsevier, vol. 262(PA).
  21. Mehdi Ali Ehyaei & Mehdi Tanehkar & Marc A. Rosen, 2016. "Analysis of an Internal Combustion Engine Using Porous Foams for Thermal Energy Recovery," Sustainability, MDPI, vol. 8(3), pages 1-11, March.
  22. Dai, Huaming & Zhu, Huiwei, 2022. "Enhancement of partial oxidation reformer by the free-section addition for hydrogen production," Renewable Energy, Elsevier, vol. 190(C), pages 425-433.
  23. Banerjee, Abhisek & Paul, Diplina, 2021. "Developments and applications of porous medium combustion: A recent review," Energy, Elsevier, vol. 221(C).
  24. Yu, Byeonghun & Kum, Sung-Min & Lee, Chang-Eon & Lee, Seungro, 2013. "Combustion characteristics and thermal efficiency for premixed porous-media types of burners," Energy, Elsevier, vol. 53(C), pages 343-350.
  25. Gao, Huai-Bin & Qu, Zhi-Guo & He, Ya-ling & Tao, Wen-Quan, 2012. "Experimental study of combustion in a double-layer burner packed with alumina pellets of different diameters," Applied Energy, Elsevier, vol. 100(C), pages 295-302.
  26. Adewole, Bamiji Z. & Abidakun, Olatunde A. & Asere, Abraham A., 2013. "Artificial neural network prediction of exhaust emissions and flame temperature in LPG (liquefied petroleum gas) fueled low swirl burner," Energy, Elsevier, vol. 61(C), pages 606-611.
  27. Wang, Qinggong & Yao, Wei & Zhang, Hui & Lu, Xiaochen, 2018. "Analysis of the performance of an alkali metal thermoelectric converter (AMTEC) based on a lumped thermal-electrochemical model," Applied Energy, Elsevier, vol. 216(C), pages 195-211.
  28. Pantangi, V.K. & Mishra, Subhash C. & Muthukumar, P. & Reddy, Rajesh, 2011. "Studies on porous radiant burners for LPG (liquefied petroleum gas) cooking applications," Energy, Elsevier, vol. 36(10), pages 6074-6080.
  29. Jithin, E.V. & Raghuram, G.K.S. & Keshavamurthy, T.V. & Velamati, Ratna Kishore & Prathap, Chockalingam & Varghese, Robin John, 2021. "A review on fundamental combustion characteristics of syngas mixtures and feasibility in combustion devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
  30. Du, Shen & Li, Ming-Jia & Ren, Qinlong & Liang, Qi & He, Ya-Ling, 2017. "Pore-scale numerical simulation of fully coupled heat transfer process in porous volumetric solar receiver," Energy, Elsevier, vol. 140(P1), pages 1267-1275.
  31. Wang, Hongmin & Wei, Chunzhi & Zhao, Pinghui & Ye, Taohong, 2014. "Experimental study on temperature variation in a porous inert media burner for premixed methane air combustion," Energy, Elsevier, vol. 72(C), pages 195-200.
  32. Akbari, M.H. & Riahi, P. & Roohi, R., 2009. "Lean flammability limits for stable performance with a porous burner," Applied Energy, Elsevier, vol. 86(12), pages 2635-2643, December.
  33. Devi, Sangjukta & Sahoo, Niranjan & Muthukumar, P., 2020. "Experimental studies on biogas combustion in a novel double layer inert Porous Radiant Burner," Renewable Energy, Elsevier, vol. 149(C), pages 1040-1052.
  34. Donoso-García, P. & Henríquez-Vargas, L., 2015. "Numerical study of turbulent porous media combustion coupled with thermoelectric generation in a recuperative reactor," Energy, Elsevier, vol. 93(P1), pages 1189-1198.
  35. Zhu, Mingming & Ma, Yu & Zhang, Dongke, 2012. "Effect of a homogeneous combustion catalyst on the combustion characteristics and fuel efficiency in a diesel engine," Applied Energy, Elsevier, vol. 91(1), pages 166-172.
  36. Li, Yueh-Heng & Hong, Jing-Ru, 2018. "Performance assessment of catalytic combustion-driven thermophotovoltaic platinum tubular reactor," Applied Energy, Elsevier, vol. 211(C), pages 843-853.
  37. Meng Yue & Mao-Zhao Xie & Jun-Rui Shi & Hong-Sheng Liu & Zhong-Shan Chen & Ya-Chao Chang, 2020. "Numerical and Experimental Investigations on Combustion Characteristics of Premixed Lean Methane–Air in a Staggered Arrangement Burner with Discrete Cylinders," Energies, MDPI, vol. 13(23), pages 1-13, December.
  38. Lee, Min Jung & Kim, Nam Il, 2010. "Experiment on the effect of Pt-catalyst on the characteristics of a small heat-regenerative CH4-air premixed combustor," Applied Energy, Elsevier, vol. 87(11), pages 3409-3416, November.
  39. Qiu, K. & Hayden, A.C.S., 2012. "Development of a novel cascading TPV and TE power generation system," Applied Energy, Elsevier, vol. 91(1), pages 304-308.
  40. Huaibin Gao & Yongyong Wang & Shouchao Zong & Yu Ma & Chuanwei Zhang, 2023. "Experimental Investigation of a Self-Sustained Liquid Fuel Burner Using Inert Porous Media," Energies, MDPI, vol. 16(14), pages 1-18, July.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.