IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i9p1365-1375.html
   My bibliography  Save this article

Applications of porous media combustion technology - A review

Author

Listed:
  • Mujeebu, M. Abdul
  • Abdullah, M.Z.
  • Bakar, M.Z. Abu
  • Mohamad, A.A.
  • Abdullah, M.K.

Abstract

The rapid advances in technology and improved living standard of the society necessitate abundant use of fossil fuels which poses two major challenges to any nation. One is fast depletion of fossil fuel resources; the other is environmental pollution. The porous medium combustion (PMC) has proved to be one of the feasible options to tackle the aforesaid problems to a remarkable extent. PMC has interesting advantages compared with free flame combustion due to the higher burning rates, the increased power dynamic range, the extension of the lean flammability limits, and the low emissions of pollutants. This article provides a comprehensive picture of the global scenario of applications of PMC so as to enable the researchers to decide the direction of further investigation. The works published so far in this area are reviewed, classified according to their objectives and presented in an organized manner with general conclusions.

Suggested Citation

  • Mujeebu, M. Abdul & Abdullah, M.Z. & Bakar, M.Z. Abu & Mohamad, A.A. & Abdullah, M.K., 2009. "Applications of porous media combustion technology - A review," Applied Energy, Elsevier, vol. 86(9), pages 1365-1375, September.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:9:p:1365-1375
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00029-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiu, K. & Hayden, A.C.S., 2009. "Increasing the efficiency of radiant burners by using polymer membranes," Applied Energy, Elsevier, vol. 86(3), pages 349-354, March.
    2. Hanamura, Katsunori & Kumano, Tomoyuki & Iida, Yuya, 2005. "Electric power generation by super-adiabatic combustion in thermoelectric porous element," Energy, Elsevier, vol. 30(2), pages 347-357.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mustafa, K.F. & Abdullah, S. & Abdullah, M.Z. & Sopian, K., 2017. "A review of combustion-driven thermoelectric (TE) and thermophotovoltaic (TPV) power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 572-584.
    2. Banerjee, Abhisek & Paul, Diplina, 2021. "Developments and applications of porous medium combustion: A recent review," Energy, Elsevier, vol. 221(C).
    3. Terracciano, Anthony Carmine & Vasu, Subith S. & Orlovskaya, Nina, 2016. "Design and development of a porous heterogeneous combustor for efficient heat production by combustion of liquid and gaseous fuels," Applied Energy, Elsevier, vol. 179(C), pages 228-236.
    4. Brown, K.J. & Farrelly, R. & O’Shaughnessy, S.M. & Robinson, A.J., 2016. "Energy efficiency of electrical infrared heating elements," Applied Energy, Elsevier, vol. 162(C), pages 581-588.
    5. Mueller, Kyle T. & Waters, Oliver & Bubnovich, Valeri & Orlovskaya, Nina & Chen, Ruey-Hung, 2013. "Super-adiabatic combustion in Al2O3 and SiC coated porous media for thermoelectric power conversion," Energy, Elsevier, vol. 56(C), pages 108-116.
    6. Sánchez, Mario & Cadavid, Francisco & Amell, Andrés, 2013. "Experimental evaluation of a 20kW oxygen enhanced self-regenerative burner operated in flameless combustion mode," Applied Energy, Elsevier, vol. 111(C), pages 240-246.
    7. Bělohradský, Petr & Skryja, Pavel & Hudák, Igor, 2014. "Experimental study on the influence of oxygen content in the combustion air on the combustion characteristics," Energy, Elsevier, vol. 75(C), pages 116-126.
    8. Maznoy, Anatoly & Kirdyashkin, Alexander & Pichugin, Nikita & Zambalov, Sergey & Petrov, Dmitry, 2020. "Development of a new infrared heater based on an annular cylindrical radiant burner for direct heating applications," Energy, Elsevier, vol. 204(C).
    9. Maznoy, Anatoly & Kirdyashkin, Alexander & Minaev, Sergey & Markov, Alexey & Pichugin, Nikita & Yakovlev, Evgeny, 2018. "A study on the effects of porous structure on the environmental and radiative characteristics of cylindrical Ni-Al burners," Energy, Elsevier, vol. 160(C), pages 399-409.
    10. Donoso-García, P. & Henríquez-Vargas, L., 2015. "Numerical study of turbulent porous media combustion coupled with thermoelectric generation in a recuperative reactor," Energy, Elsevier, vol. 93(P1), pages 1189-1198.
    11. Wang, Feng & Cao, Yiding & Wang, Guoqiang, 2015. "Thermoelectric generation coupling methanol steam reforming characteristic in microreactor," Energy, Elsevier, vol. 80(C), pages 642-653.
    12. Robayo, Manuel D. & Beaman, Ben & Hughes, Billy & Delose, Brittany & Orlovskaya, Nina & Chen, Ruey-Hung, 2014. "Perovskite catalysts enhanced combustion on porous media," Energy, Elsevier, vol. 76(C), pages 477-486.
    13. Li, Q.Y. & Wang, L. & Ju, Y.L., 2011. "Analysis of flammability limits for the liquefaction process of oxygen-bearing coal-bed methane," Applied Energy, Elsevier, vol. 88(9), pages 2934-2939.
    14. Lu, Hongliang & Wu, Ting & Bai, Shengqiang & Xu, Kangcong & Huang, Yingjie & Gao, Weimin & Yin, Xianglin & Chen, Lidong, 2013. "Experiment on thermal uniformity and pressure drop of exhaust heat exchanger for automotive thermoelectric generator," Energy, Elsevier, vol. 54(C), pages 372-377.
    15. Akbari, M.H. & Riahi, P. & Roohi, R., 2009. "Lean flammability limits for stable performance with a porous burner," Applied Energy, Elsevier, vol. 86(12), pages 2635-2643, December.
    16. Daneshvar, Hoofar & Prinja, Rajiv & Kherani, Nazir P., 2015. "Thermophotovoltaics: Fundamentals, challenges and prospects," Applied Energy, Elsevier, vol. 159(C), pages 560-575.
    17. Meriläinen, Arttu & Seppälä, Ari & Kauranen, Pertti, 2012. "Minimizing specific energy consumption of oxygen enrichment in polymeric hollow fiber membrane modules," Applied Energy, Elsevier, vol. 94(C), pages 285-294.
    18. Ismail, Ahmad Kamal & Abdullah, Mohd Zulkifly & Zubair, Mohammed & Ahmad, Zainal Arifin & Jamaludin, Abdul Rashid & Mustafa, Khairil Faizi & Abdullah, Mohamad Nazir, 2013. "Application of porous medium burner with micro cogeneration system," Energy, Elsevier, vol. 50(C), pages 131-142.
    19. Pavel Skryja & Igor Hudak & Jiří Bojanovsky & Zdeněk Jegla & Lubomír Korček, 2022. "Effects of Oxygen-Enhanced Combustion Methods on Combustion Characteristics of Non-Premixed Swirling Flames," Energies, MDPI, vol. 15(6), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:9:p:1365-1375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.