IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v122y2017icp103-110.html
   My bibliography  Save this article

Effects of the preheat layer thickness on surface/submerged flame during porous media combustion of micro burner

Author

Listed:
  • Janvekar, Ayub Ahmed
  • Miskam, M.A.
  • Abas, Aizat
  • Ahmad, Zainal Arifin
  • Juntakan, T.
  • Abdullah, M.Z.

Abstract

The applications of porous media burners are of massive interest to researchers from decades, and still trending in the modern world because of their tremendous advantages, such as high thermal efficiency and low emissions. In this work, a microburner was made to achieve surface and submerged flame region for different thicknesses of preheat layers. A reaction layer of alumina foam with a predefined thickness was used, whereas the preheat layer of porcelain foam was replaced with three different thicknesses namely 5, 10, and 15 mm. By using 5 mm preheat layer, only surface flame was visible with absolutely no trace of submerged flame region, while 10 and 15 mm can undergo both surface and submerged flame region. Equivalence ratio of 0.7 was observed to give best performance with regards to surface flame, while 0.5 for submerged flame region. Only 10 mm can able to give highest thermal efficiencies reaching 90% and 38% for the surface and submerged flame region respectively. Finally, low emission rate for NOx and CO was seen for all the possible individual cases.

Suggested Citation

  • Janvekar, Ayub Ahmed & Miskam, M.A. & Abas, Aizat & Ahmad, Zainal Arifin & Juntakan, T. & Abdullah, M.Z., 2017. "Effects of the preheat layer thickness on surface/submerged flame during porous media combustion of micro burner," Energy, Elsevier, vol. 122(C), pages 103-110.
  • Handle: RePEc:eee:energy:v:122:y:2017:i:c:p:103-110
    DOI: 10.1016/j.energy.2017.01.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217300567
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.01.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yuqing & Zeng, Hongyu & Shi, Yixiang & Cao, Tianyu & Cai, Ningsheng & Ye, Xiaofeng & Wang, Shaorong, 2016. "Power and heat co-generation by micro-tubular flame fuel cell on a porous media burner," Energy, Elsevier, vol. 109(C), pages 117-123.
    2. Wu, H. & Kim, Y.J. & Vandadi, V. & Park, C. & Kaviany, M. & Kwon, O.C., 2015. "Experiment on superadiabatic radiant burner with augmented preheating," Applied Energy, Elsevier, vol. 156(C), pages 390-397.
    3. Gao, Huai-Bin & Qu, Zhi-Guo & He, Ya-ling & Tao, Wen-Quan, 2012. "Experimental study of combustion in a double-layer burner packed with alumina pellets of different diameters," Applied Energy, Elsevier, vol. 100(C), pages 295-302.
    4. Ismail, Ahmad Kamal & Abdullah, Mohd Zulkifly & Zubair, Mohammed & Ahmad, Zainal Arifin & Jamaludin, Abdul Rashid & Mustafa, Khairil Faizi & Abdullah, Mohamad Nazir, 2013. "Application of porous medium burner with micro cogeneration system," Energy, Elsevier, vol. 50(C), pages 131-142.
    5. Mujeebu, M. Abdul & Abdullah, M.Z. & Mohamad, A.A., 2011. "Development of energy efficient porous medium burners on surface and submerged combustion modes," Energy, Elsevier, vol. 36(8), pages 5132-5139.
    6. Yoksenakul, W. & Jugjai, S., 2011. "Design and development of a SPMB (self-aspirating, porous medium burner) with a submerged flame," Energy, Elsevier, vol. 36(5), pages 3092-3100.
    7. Panigrahy, Snehasish & Mishra, Niraj Kumar & Mishra, Subhash C. & Muthukumar, P., 2016. "Numerical and experimental analyses of LPG (liquefied petroleum gas) combustion in a domestic cooking stove with a porous radiant burner," Energy, Elsevier, vol. 95(C), pages 404-414.
    8. Arya, P.K. & Tupkari, S. & K., Satish & Thakre, G.D. & Shukla, B.M., 2016. "DME blended LPG as a cooking fuel option for Indian household: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1591-1601.
    9. Sutar, Kailasnath B. & M.R., Ravi & Kohli, Sangeeta, 2016. "Design of a partially aerated naturally aspirated burner for producer gas," Energy, Elsevier, vol. 116(P1), pages 773-785.
    10. Mujeebu, M. Abdul & Abdullah, M.Z. & Bakar, M.Z. Abu & Mohamad, A.A. & Abdullah, M.K., 2009. "Applications of porous media combustion technology - A review," Applied Energy, Elsevier, vol. 86(9), pages 1365-1375, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vahidhosseini, Seyed Mohammad & Esfahani, Javad Abolfazli & Kim, Kyung Chun, 2020. "Cylindrical porous radiant burner with internal combustion regime: Energy saving analysis using response surface method," Energy, Elsevier, vol. 207(C).
    2. Deb, Sunita & Muthukumar, P., 2021. "Development and performance assessment of LPG operated cluster Porous Radiant Burner for commercial cooking and industrial applications," Energy, Elsevier, vol. 219(C).
    3. Ahmadi, Ziaulhaq & Zabetian Targhi, Mohammad, 2021. "Thermal performance investigation of a premixed surface flame burner used in the domestic heating boilers," Energy, Elsevier, vol. 236(C).
    4. Bakry, Ayman I. & Rabea, Karim & El-Fakharany, Magda, 2020. "Starting up implication of the two-region porous inert medium (PIM) burners," Energy, Elsevier, vol. 201(C).
    5. Maznoy, Anatoly & Kirdyashkin, Alexander & Minaev, Sergey & Markov, Alexey & Pichugin, Nikita & Yakovlev, Evgeny, 2018. "A study on the effects of porous structure on the environmental and radiative characteristics of cylindrical Ni-Al burners," Energy, Elsevier, vol. 160(C), pages 399-409.
    6. E, Jiaqiang & Meng, Tian & Chen, Jingwei & Wu, Weiwei & Zhao, Xiaohuan & Zhang, Bin & Peng, Qingguo, 2021. "Effect analysis on performance enhancement of a hydrogen/air non-premixed micro combustor with sudden expansion and contraction structure," Energy, Elsevier, vol. 230(C).
    7. Banerjee, Abhisek & Paul, Diplina, 2021. "Developments and applications of porous medium combustion: A recent review," Energy, Elsevier, vol. 221(C).
    8. Zhuang Kang & Zhiwei Shi & Jiahao Ye & Xinghua Tian & Zhixin Huang & Hao Wang & Depeng Wei & Qingguo Peng & Yaojie Tu, 2023. "A Review of Micro Power System and Micro Combustion: Present Situation, Techniques and Prospects," Energies, MDPI, vol. 16(7), pages 1-28, April.
    9. Zuo, Wei & E, Jiaqiang & Hu, Wenyu & Jin, Yu & Han, Dandan, 2017. "Numerical investigations on combustion characteristics of H2/air premixed combustion in a micro elliptical tube combustor," Energy, Elsevier, vol. 126(C), pages 1-12.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Banerjee, Abhisek & Paul, Diplina, 2021. "Developments and applications of porous medium combustion: A recent review," Energy, Elsevier, vol. 221(C).
    2. Wang, Hongmin & Wei, Chunzhi & Zhao, Pinghui & Ye, Taohong, 2014. "Experimental study on temperature variation in a porous inert media burner for premixed methane air combustion," Energy, Elsevier, vol. 72(C), pages 195-200.
    3. Deb, Sunita & Muthukumar, P., 2021. "Development and performance assessment of LPG operated cluster Porous Radiant Burner for commercial cooking and industrial applications," Energy, Elsevier, vol. 219(C).
    4. Song, Fuqiang & Wen, Zhi & Dong, Zhiyong & Wang, Enyu & Liu, Xunliang, 2017. "Ultra-low calorific gas combustion in a gradually-varied porous burner with annular heat recirculation," Energy, Elsevier, vol. 119(C), pages 497-503.
    5. Pahlevaninezhad, Masoud & Davazdah Emami, Mohsen & Panjepour, Masoud, 2014. "The effects of kinetic parameters on combustion characteristics in a sintering bed," Energy, Elsevier, vol. 73(C), pages 160-176.
    6. Vahidhosseini, Seyed Mohammad & Esfahani, Javad Abolfazli & Kim, Kyung Chun, 2020. "Cylindrical porous radiant burner with internal combustion regime: Energy saving analysis using response surface method," Energy, Elsevier, vol. 207(C).
    7. Mueller, Kyle T. & Waters, Oliver & Bubnovich, Valeri & Orlovskaya, Nina & Chen, Ruey-Hung, 2013. "Super-adiabatic combustion in Al2O3 and SiC coated porous media for thermoelectric power conversion," Energy, Elsevier, vol. 56(C), pages 108-116.
    8. Panigrahy, Snehasish & Mishra, Subhash C., 2018. "The combustion characteristics and performance evaluation of DME (dimethyl ether) as an alternative fuel in a two-section porous burner for domestic cooking application," Energy, Elsevier, vol. 150(C), pages 176-189.
    9. Ling, Zhongqian & Lu, Ling & Zeng, Xianyang & Kuang, Min & Ling, Bo & Gao, Chuanji & Zhou, Chao, 2023. "Ethylene combustion performance with varying the N2 content in a porous burner," Energy, Elsevier, vol. 262(PA).
    10. Mujeebu, M. Abdul & Abdullah, M.Z. & Mohamad, A.A., 2011. "Development of energy efficient porous medium burners on surface and submerged combustion modes," Energy, Elsevier, vol. 36(8), pages 5132-5139.
    11. Ismail, Ahmad Kamal & Abdullah, Mohd Zulkifly & Zubair, Mohammed & Ahmad, Zainal Arifin & Jamaludin, Abdul Rashid & Mustafa, Khairil Faizi & Abdullah, Mohamad Nazir, 2013. "Application of porous medium burner with micro cogeneration system," Energy, Elsevier, vol. 50(C), pages 131-142.
    12. Gentillon, Philippe & Southcott, Jake & Chan, Qing N. & Taylor, Robert A., 2018. "Stable flame limits for optimal radiant performance of porous media reactors for thermophotovoltaic applications using packed beds of alumina," Applied Energy, Elsevier, vol. 229(C), pages 736-744.
    13. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    14. Yuan, Ye & Li, GuoXiu & Sun, ZuoYu & Li, HongMeng & Zhou, ZiHang, 2016. "Experimental study on the dynamical features of a partially premixed methane jet flame in coflow," Energy, Elsevier, vol. 111(C), pages 593-598.
    15. Chen, Guan-Bang & Li, Yueh-Heng & Cheng, Tsarng-Sheng & Chao, Yei-Chin, 2013. "Chemical effect of hydrogen peroxide addition on characteristics of methane–air combustion," Energy, Elsevier, vol. 55(C), pages 564-570.
    16. Alexander R. Hartwell & Cole A. Wilhelm & Thomas S. Welles & Ryan J. Milcarek & Jeongmin Ahn, 2022. "Effects of Synthesis Gas Concentration, Composition, and Operational Time on Tubular Solid Oxide Fuel Cell Performance," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    17. Wichangarm, Mana & Matthujak, Anirut & Sriveerakul, Thanarath & Sucharitpwatskul, Sedthawatt & Phongthanapanich, Sutthisak, 2020. "Investigation on thermal efficiency of LPG cooking burner using computational fluid dynamics," Energy, Elsevier, vol. 203(C).
    18. Deore, Sujeetkumar P. & Gadkari, Prabodh & Mahajani, Sanjay M. & Kumar, Sandeep & Kumar, Sudarshan, 2023. "Development of a new premixed burner for biomass gasifier generated low calorific value producer gas for industrial applications," Energy, Elsevier, vol. 279(C).
    19. Zhu, Mingming & Ma, Yu & Zhang, Dongke, 2012. "Effect of a homogeneous combustion catalyst on the combustion characteristics and fuel efficiency in a diesel engine," Applied Energy, Elsevier, vol. 91(1), pages 166-172.
    20. Yu, Haiyan & Zhang, Haochun & Buahom, Piyapong & Liu, Jing & Xia, Xinlin & Park, Chul B., 2021. "Prediction of thermal conductivity of micro/nano porous dielectric materials: Theoretical model and impact factors," Energy, Elsevier, vol. 233(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:122:y:2017:i:c:p:103-110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.