IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v85y2008i9p787-799.html
   My bibliography  Save this item

Considerations on the backup of wind power: Operational backup

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Hughes, Larry, 2010. "Meeting residential space heating demand with wind-generated electricity," Renewable Energy, Elsevier, vol. 35(8), pages 1765-1772.
  2. Morales, J.M. & Mínguez, R. & Conejo, A.J., 2010. "A methodology to generate statistically dependent wind speed scenarios," Applied Energy, Elsevier, vol. 87(3), pages 843-855, March.
  3. Mohandes, M. & Rehman, S. & Rahman, S.M., 2011. "Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS)," Applied Energy, Elsevier, vol. 88(11), pages 4024-4032.
  4. Van den Bergh, Kenneth & Bruninx, Kenneth & Delarue, Erik, 2018. "Cross-border reserve markets: network constraints in cross-border reserve procurement," Energy Policy, Elsevier, vol. 113(C), pages 193-205.
  5. Wilton, Edgar & Delarue, Erik & D’haeseleer, William & van Sark, Wilfried, 2014. "Reconsidering the capacity credit of wind power: Application of cumulative prospect theory," Renewable Energy, Elsevier, vol. 68(C), pages 752-760.
  6. Gökçek, Murat & Genç, Mustafa Serdar, 2009. "Evaluation of electricity generation and energy cost of wind energy conversion systems (WECSs) in Central Turkey," Applied Energy, Elsevier, vol. 86(12), pages 2731-2739, December.
  7. Cany, Camille & Mansilla, Christine & da Costa, Pascal & Mathonnière, Gilles & Duquesnoy, Thierry & Baschwitz, Anne, 2016. "Nuclear and intermittent renewables: Two compatible supply options? The case of the French power mix," Energy Policy, Elsevier, vol. 95(C), pages 135-146.
  8. Abrell, Jan & Weigt, Hannes, 2008. "The Interaction of Emissions Trading and Renewable Energy Promotion," MPRA Paper 65658, University Library of Munich, Germany.
  9. Bellekom, Sandra & Benders, René & Pelgröm, Steef & Moll, Henk, 2012. "Electric cars and wind energy: Two problems, one solution? A study to combine wind energy and electric cars in 2020 in The Netherlands," Energy, Elsevier, vol. 45(1), pages 859-866.
  10. Li, Gong & Shi, Jing, 2010. "On comparing three artificial neural networks for wind speed forecasting," Applied Energy, Elsevier, vol. 87(7), pages 2313-2320, July.
  11. Ladenburg, Jacob & Dahlgaard, Jens-Olav, 2012. "Attitudes, threshold levels and cumulative effects of the daily wind-turbine encounters," Applied Energy, Elsevier, vol. 98(C), pages 40-46.
  12. Weigt, Hannes, 2009. "Germany's wind energy: The potential for fossil capacity replacement and cost saving," Applied Energy, Elsevier, vol. 86(10), pages 1857-1863, October.
  13. Purvins, Arturs & Zubaryeva, Alyona & Llorente, Maria & Tzimas, Evangelos & Mercier, Arnaud, 2011. "Challenges and options for a large wind power uptake by the European electricity system," Applied Energy, Elsevier, vol. 88(5), pages 1461-1469, May.
  14. De Jonghe, C. & Hobbs, B. F. & Belmans, R., 2011. "Integrating short-term demand response into long-term investment planning," Cambridge Working Papers in Economics 1132, Faculty of Economics, University of Cambridge.
  15. Carranza, O. & Garcerá, G. & Figueres, E. & González, L.G., 2010. "Peak current mode control of three-phase boost rectifiers in discontinuous conduction mode for small wind power generators," Applied Energy, Elsevier, vol. 87(8), pages 2728-2736, August.
  16. Alonso, Gustavo & Valle, Edmundo del, 2013. "Economical analysis of an alternative strategy for CO2 mitigation based on nuclear power," Energy, Elsevier, vol. 52(C), pages 66-76.
  17. Cany, C. & Mansilla, C. & Mathonnière, G. & da Costa, P., 2018. "Nuclear contribution to the penetration of variable renewable energy sources in a French decarbonised power mix," Energy, Elsevier, vol. 150(C), pages 544-555.
  18. Dupont, B. & De Jonghe, C. & Olmos, L. & Belmans, R., 2014. "Demand response with locational dynamic pricing to support the integration of renewables," Energy Policy, Elsevier, vol. 67(C), pages 344-354.
  19. Hu, Jing & Harmsen, Robert & Crijns-Graus, Wina & Worrell, Ernst, 2019. "Geographical optimization of variable renewable energy capacity in China using modern portfolio theory," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  20. Luickx, Patrick J. & Delarue, Erik D. & D'haeseleer, William D., 2010. "Impact of large amounts of wind power on the operation of an electricity generation system: Belgian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2019-2028, September.
  21. Wang, J. & Botterud, A. & Bessa, R. & Keko, H. & Carvalho, L. & Issicaba, D. & Sumaili, J. & Miranda, V., 2011. "Wind power forecasting uncertainty and unit commitment," Applied Energy, Elsevier, vol. 88(11), pages 4014-4023.
  22. Flora, Rui & Marques, António Cardoso & Fuinhas, José Alberto, 2014. "Wind power idle capacity in a panel of European countries," Energy, Elsevier, vol. 66(C), pages 823-830.
  23. Foley, A.M. & Leahy, P.G. & Li, K. & McKeogh, E.J. & Morrison, A.P., 2015. "A long-term analysis of pumped hydro storage to firm wind power," Applied Energy, Elsevier, vol. 137(C), pages 638-648.
  24. De Giorgi, Maria Grazia & Ficarella, Antonio & Tarantino, Marco, 2011. "Error analysis of short term wind power prediction models," Applied Energy, Elsevier, vol. 88(4), pages 1298-1311, April.
  25. Carranza, O. & Figueres, E. & Garcerá, G. & Gonzalez-Medina, R., 2013. "Analysis of the control structure of wind energy generation systems based on a permanent magnet synchronous generator," Applied Energy, Elsevier, vol. 103(C), pages 522-538.
  26. Hughes, Larry & Chaudhry, Nikhil, 2011. "The challenge of meeting Canada's greenhouse gas reduction targets," Energy Policy, Elsevier, vol. 39(3), pages 1352-1362, March.
  27. De Vos, Kristof & Petoussis, Andreas G. & Driesen, Johan & Belmans, Ronnie, 2013. "Revision of reserve requirements following wind power integration in island power systems," Renewable Energy, Elsevier, vol. 50(C), pages 268-279.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.