IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v225y2018icp1158-1175.html
   My bibliography  Save this item

Energy modeling approach to the global energy-mineral nexus: Exploring metal requirements and the well-below 2 °C target with 100 percent renewable energy

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ren, Kaipeng & Tang, Xu & Höök, Mikael, 2021. "Evaluating metal constraints for photovoltaics: Perspectives from China’s PV development," Applied Energy, Elsevier, vol. 282(PA).
  2. Islam, Md. Monirul & Sohag, Kazi & Alam, Md. Mahmudul, 2022. "Mineral import demand and clean energy transitions in the top mineral-importing countries," Resources Policy, Elsevier, vol. 78(C).
  3. Ren, Kaipeng & Tang, Xu & Wang, Peng & Willerström, Jakob & Höök, Mikael, 2021. "Bridging energy and metal sustainability: Insights from China’s wind power development up to 2050," Energy, Elsevier, vol. 227(C).
  4. Liu, Haiping & Li, Huajiao & Qi, Yajie & An, Pengli & Shi, Jianglan & Liu, Yanxin, 2021. "Identification of high-risk agents and relationships in nickel, cobalt, and lithium trade based on resource-dependent networks," Resources Policy, Elsevier, vol. 74(C).
  5. Wang, Peng & Chen, Li-Yang & Ge, Jian-Ping & Cai, Wenjia & Chen, Wei-Qiang, 2019. "Incorporating critical material cycles into metal-energy nexus of China’s 2050 renewable transition," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  6. Liang, Yanan & Kleijn, René & van der Voet, Ester, 2023. "Increase in demand for critical materials under IEA Net-Zero emission by 2050 scenario," Applied Energy, Elsevier, vol. 346(C).
  7. Elshkaki, Ayman, 2019. "Material-energy-water-carbon nexus in China’s electricity generation system up to 2050," Energy, Elsevier, vol. 189(C).
  8. Muhammad Huda & Tokimatsu Koji & Muhammad Aziz, 2020. "Techno Economic Analysis of Vehicle to Grid (V2G) Integration as Distributed Energy Resources in Indonesia Power System," Energies, MDPI, vol. 13(5), pages 1-16, March.
  9. Mutaz Alshafeey & Asefeh Asemi & Omar Rashdan, 2018. "Industrial revolution 4.0, renewable energy: A content analysis," Proceedings of FIKUSZ 2018, in: Proceedings of FIKUSZ '18, pages 23-31, Óbuda University, Keleti Faculty of Business and Management.
  10. Liang, Yanan & Kleijn, René & Tukker, Arnold & van der Voet, Ester, 2022. "Material requirements for low-carbon energy technologies: A quantitative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
  11. André Månberger, 2021. "Reduced Use of Fossil Fuels can Reduce Supply of Critical Resources," Biophysical Economics and Resource Quality, Springer, vol. 6(2), pages 1-15, June.
  12. Carina Harpprecht & Lauran van Oers & Stephen A. Northey & Yongxiang Yang & Bernhard Steubing, 2021. "Environmental impacts of key metals' supply and low‐carbon technologies are likely to decrease in the future," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1543-1559, December.
  13. Chen, Jinyu & Luo, Qian & Tu, Yan & Ren, Xiaohang & Naderi, Niki, 2023. "Renewable energy transition and metal consumption: Dynamic evolution analysis based on transnational data," Resources Policy, Elsevier, vol. 85(PB).
  14. Elshkaki, Ayman & Shen, Lei, 2019. "Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications," Energy, Elsevier, vol. 180(C), pages 903-917.
  15. Nyambuu, Unurjargal & Semmler, Willi, 2020. "Climate change and the transition to a low carbon economy – Carbon targets and the carbon budget," Economic Modelling, Elsevier, vol. 84(C), pages 367-376.
  16. Le Boulzec, Hugo & Delannoy, Louis & Andrieu, Baptiste & Verzier, François & Vidal, Olivier & Mathy, Sandrine, 2022. "Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data," Applied Energy, Elsevier, vol. 326(C).
  17. Ozawa, Akito & Morimoto, Shinichirou & Hatayama, Hiroki & Anzai, Yurie, 2023. "Energy–materials nexus of electrified vehicle penetration in Japan: A study on energy transition and cobalt flow," Energy, Elsevier, vol. 277(C).
  18. Elshkaki, Ayman, 2023. "The implications of material and energy efficiencies for the climate change mitigation potential of global energy transition scenarios," Energy, Elsevier, vol. 267(C).
  19. Qu, Chunzi & Bang, Rasmus Noss, 2023. "Comparative Investment Analysis of Wind and Nuclear Energy: Assessing the Impact of Changes in the Electricity Mix and Required Government Support for Investment Parity," Discussion Papers 2023/8, Norwegian School of Economics, Department of Business and Management Science.
  20. Aramendia, Emmanuel & Brockway, Paul E. & Taylor, Peter G. & Norman, Jonathan B., 2024. "Exploring the effects of mineral depletion on renewable energy technologies net energy returns," Energy, Elsevier, vol. 290(C).
  21. Xinyu Luo & Lingying Pan & Jie Yang, 2022. "Mineral Resource Constraints for China’s Clean Energy Development under Carbon Peaking and Carbon Neutrality Targets: Quantitative Evaluation and Scenario Analysis," Energies, MDPI, vol. 15(19), pages 1-21, September.
  22. Islam, Md. Monirul & Sohag, Kazi & Mariev, Oleg, 2024. "Mineral import demand-driven solar energy generation in China: A threshold estimation using the counterfactual shock approach," Renewable Energy, Elsevier, vol. 221(C).
  23. Roussanaly, S. & Aasen, A. & Anantharaman, R. & Danielsen, B. & Jakobsen, J. & Heme-De-Lacotte, L. & Neji, G. & Sødal, A. & Wahl, P.E. & Vrana, T.K. & Dreux, R., 2019. "Offshore power generation with carbon capture and storage to decarbonise mainland electricity and offshore oil and gas installations: A techno-economic analysis," Applied Energy, Elsevier, vol. 233, pages 478-494.
  24. Papadis, Elisa & Tsatsaronis, George, 2020. "Challenges in the decarbonization of the energy sector," Energy, Elsevier, vol. 205(C).
  25. Abbas, Shujaat & Sinha, Avik & Saha, Tanaya & Shah, Muhammad Ibrahim, 2023. "Response of mineral market to renewable energy production in the USA: Where lies the sustainable energy future," Energy Policy, Elsevier, vol. 182(C).
  26. Manfroni, Michele & Bukkens, Sandra G.F. & Giampietro, Mario, 2022. "Securing fuel demand with unconventional oils: A metabolic perspective," Energy, Elsevier, vol. 261(PB).
  27. Gao, Tong & Fang, Delin & Chen, Bin, 2020. "Multi-regional input-output and linkage analysis for water-PM2.5 nexus," Applied Energy, Elsevier, vol. 268(C).
  28. Elshkaki, Ayman, 2020. "Long-term analysis of critical materials in future vehicles electrification in China and their national and global implications," Energy, Elsevier, vol. 202(C).
  29. Md. Monirul Islam & Kazi Sohag & Faheem ur Rehman, 2022. "Do Geopolitical Tensions and Economic Policy Uncertainties Reorient Mineral Imports in the USA? A Fat-Tailed Data Analysis Using Novel Quantile Approaches," Mathematics, MDPI, vol. 11(1), pages 1-25, December.
  30. Abdul-Manan, Amir F.N. & Won, Hyun-Woo & Li, Yang & Sarathy, S. Mani & Xie, Xiaomin & Amer, Amer A., 2020. "Bridging the gap in a resource and climate-constrained world with advanced gasoline compression-ignition hybrids," Applied Energy, Elsevier, vol. 267(C).
  31. Junne, Tobias & Wulff, Niklas & Breyer, Christian & Naegler, Tobias, 2020. "Critical materials in global low-carbon energy scenarios: The case for neodymium, dysprosium, lithium, and cobalt," Energy, Elsevier, vol. 211(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.