IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v138y2015icp346-366.html
   My bibliography  Save this item

Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
  2. Chu, Pei Lin & Vanderghem, Caroline & MacLean, Heather L. & Saville, Bradley A., 2017. "Financial analysis and risk assessment of hydroprocessed renewable jet fuel production from camelina, carinata and used cooking oil," Applied Energy, Elsevier, vol. 198(C), pages 401-409.
  3. Wang, Wei-Cheng & Liu, Yu-Cheng & Nugroho, Rusdan Aditya Aji, 2022. "Techno-economic analysis of renewable jet fuel production: The comparison between Fischer-Tropsch synthesis and pyrolysis," Energy, Elsevier, vol. 239(PA).
  4. Zhang, Chi & Hui, Xin & Lin, Yuzhen & Sung, Chih-Jen, 2016. "Recent development in studies of alternative jet fuel combustion: Progress, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 120-138.
  5. Ahmad, Salman & Ouenniche, Jamal & Kolosz, Ben W. & Greening, Philip & Andresen, John M. & Maroto-Valer, M. Mercedes & Xu, Bing, 2021. "A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways," International Journal of Production Economics, Elsevier, vol. 238(C).
  6. Alherbawi, Mohammad & McKay, Gordon & Mackey, Hamish R. & Al-Ansari, Tareq, 2021. "Jatropha curcas for jet biofuel production: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  7. Nikolaos Detsios & Leda Maragoudaki & Stefano Rebecchi & Koen Quataert & Karel De Winter & Vassilis Stathopoulos & Nikolaos G. Orfanoudakis & Panagiotis Grammelis & Konstantinos Atsonios, 2024. "Techno-Economic Evaluation of Jet Fuel Production via an Alternative Gasification-Driven Biomass-to-Liquid Pathway and Benchmarking with the State-of-the-Art Fischer–Tropsch and Alcohol-to-Jet Concept," Energies, MDPI, vol. 17(7), pages 1-23, April.
  8. Wei, Juntao & Guo, Qinghua & Ding, Lu & Yoshikawa, Kunio & Yu, Guangsuo, 2017. "Synergy mechanism analysis of petroleum coke and municipal solid waste (MSW)-derived hydrochar co-gasification," Applied Energy, Elsevier, vol. 206(C), pages 1354-1363.
  9. Comidy, Liam J.F. & Staples, Mark D. & Barrett, Steven R.H., 2019. "Technical, economic, and environmental assessment of liquid fuel production on aircraft carriers," Applied Energy, Elsevier, vol. 256(C).
  10. Atsonios, Konstantinos & Li, Jun & Inglezakis, Vassilis J., 2023. "Process analysis and comparative assessment of advanced thermochemical pathways for e-kerosene production," Energy, Elsevier, vol. 278(PA).
  11. Zhang, Xuesong & Lei, Hanwu & Zhu, Lei & Qian, Moriko & Zhu, Xiaolu & Wu, Joan & Chen, Shulin, 2016. "Enhancement of jet fuel range alkanes from co-feeding of lignocellulosic biomass with plastics via tandem catalytic conversions," Applied Energy, Elsevier, vol. 173(C), pages 418-430.
  12. Cao, Pengfei & Adegbite, Stephen & Zhao, Haitao & Lester, Edward & Wu, Tao, 2018. "Tuning dry reforming of methane for F-T syntheses: A thermodynamic approach," Applied Energy, Elsevier, vol. 227(C), pages 190-197.
  13. Xu, Jie & Yuan, Zhenhong & Chang, Shiyan, 2018. "Long-term cost trajectories for biofuels in China projected to 2050," Energy, Elsevier, vol. 160(C), pages 452-465.
  14. Galloni, E. & Scala, F. & Fontana, G., 2019. "Influence of fuel bio-alcohol content on the performance of a turbo-charged, PFI, spark-ignition engine," Energy, Elsevier, vol. 170(C), pages 85-92.
  15. Douwe F. A. van der Kroft & Jeroen F. J. Pruyn, 2021. "A Study into the Availability, Costs and GHG Reduction in Drop-In Biofuels for Shipping under Different Regimes between 2020 and 2050," Sustainability, MDPI, vol. 13(17), pages 1-20, September.
  16. Gutiérrez-Antonio, C. & Gómez-Castro, F.I. & de Lira-Flores, J.A. & Hernández, S., 2017. "A review on the production processes of renewable jet fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 709-729.
  17. Antonio Molino & Vincenzo Larocca & Simeone Chianese & Dino Musmarra, 2018. "Biofuels Production by Biomass Gasification: A Review," Energies, MDPI, vol. 11(4), pages 1-31, March.
  18. Kuo, Yen-Ting & Almansa, G. Aranda & Vreugdenhil, B.J., 2018. "Catalytic aromatization of ethylene in syngas from biomass to enhance economic sustainability of gas production," Applied Energy, Elsevier, vol. 215(C), pages 21-30.
  19. Wang, Hongliang & Yang, Bin & Zhang, Qian & Zhu, Wanbin, 2020. "Catalytic routes for the conversion of lignocellulosic biomass to aviation fuel range hydrocarbons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
  20. Kroyan, Yuri & Wojcieszyk, Michał & Kaario, Ossi & Larmi, Martti, 2022. "Modeling the impact of sustainable aviation fuel properties on end-use performance and emissions in aircraft jet engines," Energy, Elsevier, vol. 255(C).
  21. Santos, Catarina I. & Silva, Constança C. & Mussatto, Solange I. & Osseweijer, Patricia & van der Wielen, Luuk A.M. & Posada, John A., 2018. "Integrated 1st and 2nd generation sugarcane bio-refinery for jet fuel production in Brazil: Techno-economic and greenhouse gas emissions assessment," Renewable Energy, Elsevier, vol. 129(PB), pages 733-747.
  22. Nikolaos Detsios & Stella Theodoraki & Leda Maragoudaki & Konstantinos Atsonios & Panagiotis Grammelis & Nikolaos G. Orfanoudakis, 2023. "Recent Advances on Alternative Aviation Fuels/Pathways: A Critical Review," Energies, MDPI, vol. 16(4), pages 1-25, February.
  23. Wang, Wei-Cheng, 2019. "Techno-economic analysis for evaluating the potential feedstocks for producing hydro-processed renewable jet fuel in Taiwan," Energy, Elsevier, vol. 179(C), pages 771-783.
  24. Pérez-Fortes, Mar & Schöneberger, Jan C. & Boulamanti, Aikaterini & Tzimas, Evangelos, 2016. "Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment," Applied Energy, Elsevier, vol. 161(C), pages 718-732.
  25. Morenike Ajike Peters & Carine Tondo Alves & Jude Azubuike Onwudili, 2023. "A Review of Current and Emerging Production Technologies for Biomass-Derived Sustainable Aviation Fuels," Energies, MDPI, vol. 16(16), pages 1-40, August.
  26. Klein, Bruno Colling & Chagas, Mateus Ferreira & Junqueira, Tassia Lopes & Rezende, Mylene Cristina Alves Ferreira & Cardoso, Terezinha de Fátima & Cavalett, Otavio & Bonomi, Antonio, 2018. "Techno-economic and environmental assessment of renewable jet fuel production in integrated Brazilian sugarcane biorefineries," Applied Energy, Elsevier, vol. 209(C), pages 290-305.
  27. Chen, Jingwei & Wang, Chenxi & Shang, Wenxue & Bai, Yu & Wu, Xiaomin, 2023. "Study on the mechanisms of hydrogen production from alkali lignin gasification in supercritical water by ReaxFF molecular dynamics simulation," Energy, Elsevier, vol. 278(PA).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.